diff --git a/src/sage/schemes/curves/affine_curve.py b/src/sage/schemes/curves/affine_curve.py index 8d6474115ef..5eefb3f8e99 100644 --- a/src/sage/schemes/curves/affine_curve.py +++ b/src/sage/schemes/curves/affine_curve.py @@ -2143,7 +2143,7 @@ def function(self, f): if f not in R and f.parent() is self.coordinate_ring(): f = f.lift() - phi = self._lift_to_function_field + phi = self._map_to_function_field num = R(f.numerator()) den = R(f.denominator()) return phi(num) / phi(den) @@ -2373,7 +2373,7 @@ def _function_field(self): return self._nonsingular_model[0] @lazy_attribute - def _lift_to_function_field(self): + def _map_to_function_field(self): """ Return the map to the function field of the curve. @@ -2381,7 +2381,7 @@ def _lift_to_function_field(self): sage: A. = AffineSpace(GF(11), 3) sage: C = Curve([x*z - y^2, y - z^2, x - y*z], A) - sage: C._lift_to_function_field + sage: C._map_to_function_field Ring morphism: From: Fraction Field of Multivariate Polynomial Ring in x, y, z over Finite Field of size 11 @@ -2438,7 +2438,7 @@ def _singularities(self): [(Point (x, y), [Place (x, 1/x*y^3 + 1/x*y^2 + 1), Place (x, 1/x*y^3 + 1/x*y^2 + 6)])] """ - to_F = self._lift_to_function_field + to_F = self._map_to_function_field sing = self.singular_subscheme() funcs = [] @@ -2655,7 +2655,7 @@ def places_on(self, point): sage: Cp = Curve(x^3*y + y^3*z + x*z^3) sage: C = Cp.affine_patch(0) """ - phi = self._lift_to_function_field + phi = self._map_to_function_field gs = [phi(g) for g in point.prime_ideal().gens()] fs = [g for g in gs if not g.is_zero()] f = fs.pop() diff --git a/src/sage/schemes/curves/projective_curve.py b/src/sage/schemes/curves/projective_curve.py index 3e6c40920c1..21efc6b6109 100644 --- a/src/sage/schemes/curves/projective_curve.py +++ b/src/sage/schemes/curves/projective_curve.py @@ -2349,7 +2349,7 @@ def function(self, f): - Place (y, z + 1) """ S = self.ambient_space().coordinate_ring() - phi = self._lift_to_function_field + phi = self._map_to_function_field num = S(f.numerator()) den = S(f.denominator()) if num.degree() != den.degree(): @@ -2427,7 +2427,7 @@ def _function_field(self): return self._open_affine._function_field @lazy_attribute - def _lift_to_function_field(self): + def _map_to_function_field(self): """ Return the map to function field of the curve. @@ -2435,7 +2435,7 @@ def _lift_to_function_field(self): sage: P. = ProjectiveSpace(GF(5), 2) sage: C = Curve(y^2*z^7 - x^9 - x*z^8) - sage: C._lift_to_function_field + sage: C._map_to_function_field Ring morphism: From: Multivariate Polynomial Ring in x, y, z over Finite Field of size 5 To: Function field in z defined by z^8 + 4*y^2*z^7 + 1 @@ -2508,7 +2508,7 @@ def _singularities(self): """ S = self.ambient_space().coordinate_ring() - to_F = self._lift_to_function_field + to_F = self._map_to_function_field sing = self.singular_subscheme() # singular locus # for each affine patch, places on which the dehomogenized polynomials @@ -2694,7 +2694,7 @@ def places_on(self, point): if not S.gen(i) in prime: break - phi = self._lift_to_function_field + phi = self._map_to_function_field denom = self._coordinate_functions[i] gs = [phi(f)/denom**f.degree() for f in prime.gens()] fs = [g for g in gs if not g.is_zero()]