diff --git a/src/sage/dynamics/arithmetic_dynamics/wehlerK3.py b/src/sage/dynamics/arithmetic_dynamics/wehlerK3.py index 72676c1ad2a..97d77991e34 100644 --- a/src/sage/dynamics/arithmetic_dynamics/wehlerK3.py +++ b/src/sage/dynamics/arithmetic_dynamics/wehlerK3.py @@ -336,8 +336,8 @@ def Gpoly(self, component, k): They are defined as: `G^*_k = \left(L^*_j\right)^2Q^*_{ii}-L^*_iL^*_jQ^*_{ij}+\left(L^*_i\right)^2Q^*_{jj}` - where {i, j, k} is some permutation of (0, 1, 2) and * is either - x (``component=1``) or y (``component=0``). + where `(i, j, k)` is some permutation of `(0, 1, 2)` and `*` is either + `x` (``component=1``) or `y` (``component=0``). INPUT: @@ -345,7 +345,7 @@ def Gpoly(self, component, k): - ``k`` -- Integer: 0, 1 or 2 - OUTPUT: polynomial in terms of either y (``component=0``) or x (``component=1``) + OUTPUT: polynomial in terms of either `y` (``component=0``) or `x` (``component=1``) EXAMPLES:: @@ -875,11 +875,11 @@ def degenerate_fibers(self): return [xFibers,yFibers] @cached_method - def degenerate_primes(self,check=True): + def degenerate_primes(self, check=True): r""" - Determine which primes `p` self has degenerate fibers over `GF(p)`. + Determine which primes `p` self has degenerate fibers over `\GF{p}`. - If check is False, then may return primes that do not have degenerate fibers. + If ``check`` is ``False``, then may return primes that do not have degenerate fibers. Raises an error if the surface is degenerate. Works only for ``ZZ`` or ``QQ``. @@ -888,15 +888,15 @@ def degenerate_primes(self,check=True): ALGORITHM: `p` is a prime of bad reduction if and only if the defining - polynomials of self plus the G and H polynomials have a common + polynomials of ``self`` plus the G and H polynomials have a common zero. Or stated another way, `p` is a prime of bad reduction if and only if the radical of the ideal defined by the defining - polynomials of self plus the G and H polynomials is not + polynomials of ``self`` plus the G and H polynomials is not `(x_0,x_1,\ldots,x_N)`. This happens if and only if some power of each `x_i` is not in the ideal defined by the - defining polynomials of self (with G and H). This last condition + defining polynomials of ``self`` (with G and H). This last condition is what is checked. The lcm of the coefficients of the monomials `x_i` in - a groebner basis is computed. This may return extra primes. + a Groebner basis is computed. This may return extra primes. OUTPUT: List of primes. @@ -915,9 +915,9 @@ def degenerate_primes(self,check=True): PP = self.ambient_space() if PP.base_ring() != ZZ and PP.base_ring() != QQ: if PP.base_ring() in _NumberFields or isinstance(PP.base_ring(), sage.rings.abc.Order): - raise NotImplementedError("must be ZZ or QQ") + raise NotImplementedError("only implemented for ZZ and QQ") else: - raise TypeError("must be over a number field") + raise TypeError("must be over a number field or number field order") if self.is_degenerate(): raise TypeError("surface is degenerate at all primes") RR = PP.coordinate_ring()