Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Dense polynomials over Z/nZ , with n composite and using NTL, failed to execute inverse_mod #15788

Open
cyrilbouvier opened this issue Feb 5, 2014 · 8 comments

Comments

@cyrilbouvier
Copy link
Contributor

In sage 6.0, dense polynomials over Z/nZ with n composite raise an AttributeError about missing attribute xgcd when inverse_mod is called. Here is an example:

sage: K.<t> = PolynomialRing(IntegerModRing(42), 't', implementation='NTL')
sage: L.<y> = PolynomialRing(IntegerModRing(42), 'y', implementation='FLINT')
sage: M.<x> = PolynomialRing(IntegerModRing(5), 'x', implementation='NTL')
sage: (x^2+1).inverse_mod(x^2)
1
sage: (y^2+1).inverse_mod(y^2)
1
sage: (t^2+1).inverse_mod(t^2)
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-71-4ae1aed5e4de> in <module>()
----> 1 (t**Integer(2)+Integer(1)).inverse_mod(t**Integer(2))

/usr/local/sage-6.0-x86_64-Linux/local/lib/python2.7/site-packages/sage/rings/polynomial/polynomial_element.so in sage.rings.polynomial.polynomial_element.Polynomial.inverse_mod (sage/rings/polynomial/polynomial_element.c:11456)()

/usr/local/sage-6.0-x86_64-Linux/local/lib/python2.7/site-packages/sage/structure/element.so in sage.structure.element.Element.__getattr__ (sage/structure/element.c:3873)()

/usr/local/sage-6.0-x86_64-Linux/local/lib/python2.7/site-packages/sage/structure/misc.so in sage.structure.misc.getattr_from_other_class (sage/structure/misc.c:1696)()

AttributeError: 'sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_zz' object has no attribute 'xgcd'

This works for polynomials ring over Z/nZ that use FLINT (so only for small n) or that use NTL but with prime n.
The buggy behavior is that sage indicates that inverse_mod attribute should exists :

sage: p = t^2+1
sage: p.inverse_mod?
Type:       builtin_function_or_method
String Form:<built-in method inverse_mod of sage.rings.polynomial.polynomial_modn_dense_ntl.Polynomial_dense_modn_ntl_zz object at 0x2c488de0>
Definition: p.inverse_mod(a, m)
Docstring:
   Inverts the polynomial a with respect to m, or raises a ValueError
   if no such inverse exists. The parameter m may be either a single
   polynomial or an ideal (for consistency with inverse_mod in other
   rings).

   EXAMPLES:

      sage: S.<t> = QQ[]
      sage: f = inverse_mod(t^2 + 1, t^3 + 1); f
      -1/2*t^2 - 1/2*t + 1/2
      sage: f * (t^2 + 1) % (t^3 + 1)
      1
      sage: f = t.inverse_mod((t+1)^7); f
      -t^6 - 7*t^5 - 21*t^4 - 35*t^3 - 35*t^2 - 21*t - 7
      sage: (f * t) + (t+1)^7
      1
      sage: t.inverse_mod(S.ideal((t + 1)^7)) == f
      True

   This also works over inexact rings, but note that due to rounding
   error the product may not always exactly equal the constant
   polynomial 1 and have extra terms with coefficients close to zero.

      sage: R.<x> = RDF[]
      sage: epsilon = RDF(1).ulp()*50   # Allow an error of up to 50 ulp
      sage: f = inverse_mod(x^2 + 1, x^5 + x + 1); f
      0.4*x^4 - 0.2*x^3 - 0.4*x^2 + 0.2*x + 0.8
      sage: poly = f * (x^2 + 1) % (x^5 + x + 1)
      sage: # Remove noisy zero terms:
      sage: parent(poly)([ 0.0 if abs(c)<=epsilon else c for c in poly.coeffs() ])
      1.0
      sage: f = inverse_mod(x^3 - x + 1, x - 2); f
      0.142857142857
      sage: f * (x^3 - x + 1) % (x - 2)
      1.0
      sage: g = 5*x^3+x-7; m = x^4-12*x+13; f = inverse_mod(g, m); f
      -0.0319636125...*x^3 - 0.0383269759...*x^2 - 0.0463050900...*x + 0.346479687...
      sage: poly = f*g % m
      sage: # Remove noisy zero terms:
      sage: parent(poly)([ 0.0 if abs(c)<=epsilon else c for c in poly.coeffs() ])
      1.0

   ALGORITHM: Solve the system as + mt = 1, returning s as the inverse
   of a mod m.

   Uses the Euclidean algorithm for exact rings, and solves a linear
   system for the coefficients of s and t for inexact rings (as the
   Euclidean algorithm may not converge in that case).

   AUTHORS:

   * Robert Bradshaw (2007-05-31)


Cyril

Component: basic arithmetic

Author: Mark Saaltink

Branch/Commit: u/msaaltink/dense_polynomials_over_z_nz___with_n_composite_and_using_ntl__failed_to_execute_inverse_mod @ 87499b2

Issue created by migration from https://trac.sagemath.org/ticket/15788

@cyrilbouvier cyrilbouvier added this to the sage-6.2 milestone Feb 5, 2014
@sagetrac-vbraun-spam sagetrac-vbraun-spam mannequin modified the milestones: sage-6.2, sage-6.3 May 6, 2014
@sagetrac-vbraun-spam sagetrac-vbraun-spam mannequin modified the milestones: sage-6.3, sage-6.4 Aug 10, 2014
@kedlaya
Copy link
Contributor

kedlaya commented Aug 17, 2016

comment:3

For the record, when I try this in 7.3, the error reported is different (but this doesn't change the underlying issue with the documentation):

...
sage: sage: (t^2+1).inverse_mod(t^2)
---------------------------------------------------------------------------
NotImplementedError                       Traceback (most recent call last)
<ipython-input-8-4ae1aed5e4de> in <module>()
----> 1 (t**Integer(2)+Integer(1)).inverse_mod(t**Integer(2))

/home/kedlaya/sage-complete/src/sage/rings/polynomial/polynomial_element.pyx in sage.rings.polynomial.polynomial_element.Polynomial.inverse_mod (/home/kedlaya/sage-complete/src/build/cythonized/sage/rings/polynomial/polynomial_element.c:14109)()
   1346         if a.parent().is_exact():
   1347             # use xgcd
-> 1348             g, s, _ = a.xgcd(m)
   1349             if g == 1:
   1350                 return s

/home/kedlaya/sage-complete/src/sage/structure/element.pyx in sage.structure.element.NamedBinopMethod.__call__ (/home/kedlaya/sage-complete/src/build/cythonized/sage/structure/element.c:26637)()
   3438                 return getattr(x, self._name)(y, **kwds)
   3439         else:
-> 3440             return self._func(x,y, **kwds)
   3441 
   3442     def __get__(self, obj, objtype):

/home/kedlaya/sage-complete/src/sage/rings/polynomial/polynomial_element.pyx in sage.rings.polynomial.polynomial_element.Polynomial.xgcd (/home/kedlaya/sage-complete/src/build/cythonized/sage/rings/polynomial/polynomial_element.c:63301)()
   7359             return self.base_ring()._xgcd_univariate_polynomial(self, other)
   7360         else:
-> 7361             raise NotImplementedError("%s does not provide an xgcd implementation for univariate polynomials"%self.base_ring())
   7362 
   7363     def variables(self):

NotImplementedError: Ring of integers modulo 42 does not provide an xgcd implementation for univariate polynomials

@sagetrac-msaaltink
Copy link
Mannequin

sagetrac-msaaltink mannequin commented Feb 26, 2017

@sagetrac-msaaltink
Copy link
Mannequin

sagetrac-msaaltink mannequin commented Feb 26, 2017

Author: Mark Saaltink

@sagetrac-msaaltink
Copy link
Mannequin

sagetrac-msaaltink mannequin commented Feb 26, 2017

Commit: 87499b2

@sagetrac-msaaltink
Copy link
Mannequin

sagetrac-msaaltink mannequin commented Feb 26, 2017

New commits:

87499b2Fix inverse_mod for univariate polynomials over ZZ mod n for composite n.

@lftabera
Copy link
Contributor

comment:6

ntl has its own implementation of invmod, so we use should use that, note also that ntl allows to use xgcd ever for composite n.

sage: from sage.libs.ntl.ntl_ZZ_pX import ntl_ZZ_pContext, ntl_ZZ_pX
sage: c = ntl_ZZ_pContext(42)
sage: f = ntl_ZZ_pX([1, 0, 1],c)
sage: g = ntl_ZZ_pX([0, 0, 1],c)
sage: f.xgcd(g)
([1], [1], [41])

there is also invmod but it seems that does not work right now in my computer...

@videlec
Copy link
Contributor

videlec commented Aug 3, 2018

comment:8

update milestone 8.3 -> 8.4

@videlec videlec modified the milestones: sage-8.3, sage-8.4 Aug 3, 2018
@maple3142
Copy link
Mannequin

maple3142 mannequin commented Mar 30, 2021

comment:9

Calculating xgcd of polynomials using NTL implementation still doesn't work in Sage 9.2.

Code:

print(version())
K.<t> = PolynomialRing(IntegerModRing(42), 't', implementation='NTL')
print((t^2+1).inverse_mod(t^2))

Output:

SageMath version 9.2, Release Date: 2020-10-24
---------------------------------------------------------------------------
NotImplementedError                       Traceback (most recent call last)
<ipython-input-1-b06a1f7d9362> in <module>
      1 print(version())
      2 K = PolynomialRing(IntegerModRing(Integer(42)), 't', implementation='NTL', names=('t',)); (t,) = K._first_ngens(1)
----> 3 print((t**Integer(2)+Integer(1)).inverse_mod(t**Integer(2)))

/home/sc_serv/sage/local/lib/python3.8/site-packages/sage/rings/polynomial/polynomial_element.pyx in sage.rings.polynomial.polynomial_element.Polynomial.inverse_mod (build/cythonized/sage/rings/polynomial/polynomial_element.c:15403)()
   1490         if a.parent().is_exact():
   1491             # use xgcd
-> 1492             g, s, _ = a.xgcd(m)
   1493             if g == 1:
   1494                 return s

/home/sc_serv/sage/local/lib/python3.8/site-packages/sage/structure/element.pyx in sage.structure.element.coerce_binop.new_method (build/cythonized/sage/structure/element.c:27687)()
   4347     def new_method(self, other, *args, **kwargs):
   4348         if have_same_parent(self, other):
-> 4349             return method(self, other, *args, **kwargs)
   4350         else:
   4351             a, b = coercion_model.canonical_coercion(self, other)

/home/sc_serv/sage/local/lib/python3.8/site-packages/sage/rings/polynomial/polynomial_element.pyx in sage.rings.polynomial.polynomial_element.Polynomial.xgcd (build/cythonized/sage/rings/polynomial/polynomial_element.c:70376)()
   8503             return self.base_ring()._xgcd_univariate_polynomial(self, other)
   8504         else:
-> 8505             raise NotImplementedError("%s does not provide an xgcd implementation for univariate polynomials"%self.base_ring())
   8506 
   8507     def rational_reconstruct(self, m, n_deg=None, d_deg=None):

NotImplementedError: Ring of integers modulo 42 does not provide an xgcd implementation for univariate polynomials

@mkoeppe mkoeppe removed this from the sage-8.4 milestone Dec 29, 2022
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

No branches or pull requests

5 participants