diff --git a/src/sage/homology/free_resolution.py b/src/sage/homology/free_resolution.py index 8cc950df90c..29c33e4e2a6 100644 --- a/src/sage/homology/free_resolution.py +++ b/src/sage/homology/free_resolution.py @@ -7,8 +7,8 @@ .. MATH:: - R^{n_0} \xleftarrow{d_1} R^{n_1} \xleftarrow{d_2} - \cdots \xleftarrow{d_k} R^{n_k} \xleftarrow{d_{k+1}} 0 + 0 \rightarrow R^{n_k} \xrightarrow{d_k} + \cdots \xrightarrow{d_2} R^{n_1} \xrightarrow{d_1} R^{n_0} terminating with a zero module at the end that is exact (all homology groups are zero) such that the image of `d_1` is `M`. @@ -87,8 +87,8 @@ class FreeResolution(SageObject, metaclass=ClasscallMetaclass): .. MATH:: - R^{n_1} \xleftarrow{d_1} R^{n_1} \xleftarrow{d_2} - \cdots \xleftarrow{d_k} R^{n_k} \xleftarrow{d_{k+1}} \cdots + \cdots \rightarrow R^{n_k} \xrightarrow{d_k} + \cdots \xrightarrow{d_2} R^{n_1} \xrightarrow{d_1} R^{n_0} that is exact (all homology groups are zero) such that the image of `d_1` is `M`. @@ -792,14 +792,14 @@ class FiniteFreeResolution_singular(FiniteFreeResolution): The available algorithms and the corresponding Singular commands are shown below: - ============= ============================ - algorithm Singular commands - ============= ============================ - ``minimal`` ``mres(ideal)`` - ``shreyer`` ``minres(sres(std(ideal)))`` - ``standard`` ``minres(nres(std(ideal)))`` - ``heuristic`` ``minres(res(std(ideal)))`` - ============= ============================ + ============= ============================ + algorithm Singular commands + ============= ============================ + ``minimal`` ``mres(ideal)`` + ``shreyer`` ``minres(sres(std(ideal)))`` + ``standard`` ``minres(nres(std(ideal)))`` + ``heuristic`` ``minres(res(std(ideal)))`` + ============= ============================ EXAMPLES:: diff --git a/src/sage/homology/graded_resolution.py b/src/sage/homology/graded_resolution.py index 0c01ad6f423..ceadd15c2de 100644 --- a/src/sage/homology/graded_resolution.py +++ b/src/sage/homology/graded_resolution.py @@ -97,16 +97,16 @@ class GradedFiniteFreeResolution(FiniteFreeResolution): - ``module`` -- a homogeneous submodule of a free module `M` of rank `n` over `S` or a homogeneous ideal of a multivariate polynomial ring `S` + - ``degrees`` -- (default: a list with all entries `1`) a list of integers or integer vectors giving degrees of variables of `S` + - ``shifts`` -- a list of integers or integer vectors giving shifts of degrees of `n` summands of the free module `M`; this is a list of zero degrees of length `n` by default - - ``name`` -- a string; name of the base ring - .. WARNING:: + - ``name`` -- a string; name of the base ring - This does not check that the module is homogeneous. """ def __init__(self, module, degrees=None, shifts=None, name='S', **kwds): r""" @@ -317,10 +317,6 @@ class GradedFiniteFreeResolution_free_module(GradedFiniteFreeResolution, FiniteF r""" Graded free resolution of free modules. - .. WARNING:: - - This does not check that the module is homogeneous. - EXAMPLES:: sage: from sage.homology.free_resolution import FreeResolution @@ -434,8 +430,10 @@ class GradedFiniteFreeResolution_singular(GradedFiniteFreeResolution, FiniteFree - ``algorithm`` -- Singular algorithm to compute a resolution of ``ideal`` - If ``module`` is an ideal of `S`, it is considered as a submodule of a - free module of rank `1` over `S`. + OUTPUT: a graded minimal free resolution of ``ideal`` + + If ``module`` is an ideal of `S`, it is considered as a submodule of a free + module of rank `1` over `S`. The degrees given to the variables of `S` are integers or integer vectors of the same length. In the latter case, `S` is said to be multigraded, and the @@ -446,25 +444,18 @@ class GradedFiniteFreeResolution_singular(GradedFiniteFreeResolution, FiniteFree rank one over `S`, denoted `S(-d)` with shift `d`. The computation of the resolution is done by using ``libSingular``. - Different Singular algorithms can be chosen for best performance. - - OUTPUT: a graded minimal free resolution of ``ideal`` - - The available algorithms and the corresponding Singular commands are shown + Different Singular algorithms can be chosen for best performance. The + available algorithms and the corresponding Singular commands are shown below: - ============= ============================ - algorithm Singular commands - ============= ============================ - ``minimal`` ``mres(ideal)`` - ``shreyer`` ``minres(sres(std(ideal)))`` - ``standard`` ``minres(nres(std(ideal)))`` - ``heuristic`` ``minres(res(std(ideal)))`` - ============= ============================ - - .. WARNING:: - - This does not check that the module is homogeneous. + ============= ============================ + algorithm Singular commands + ============= ============================ + ``minimal`` ``mres(ideal)`` + ``shreyer`` ``minres(sres(std(ideal)))`` + ``standard`` ``minres(nres(std(ideal)))`` + ``heuristic`` ``minres(res(std(ideal)))`` + ============= ============================ EXAMPLES::