diff --git a/src/doc/en/prep/Programming.rst b/src/doc/en/prep/Programming.rst index 22a613a081b..8ca88b1a90d 100644 --- a/src/doc/en/prep/Programming.rst +++ b/src/doc/en/prep/Programming.rst @@ -728,7 +728,7 @@ not have :math:`I=\sqrt{-1}`, decimal points, or division. sage: parent(c) Real Field with 53 bits of precision sage: parent(d) - Symbolic Ring + Number Field in I with defining polynomial x^2 + 1 with I = 1*I sage: parent(e) - Symbolic Ring + Complex Field with 53 bits of precision diff --git a/src/sage/categories/rings.py b/src/sage/categories/rings.py index 79b655afb8b..ea02c088a8b 100644 --- a/src/sage/categories/rings.py +++ b/src/sage/categories/rings.py @@ -999,7 +999,7 @@ def __getitem__(self, arg): and orders in number fields:: sage: ZZ[I] - Order in Number Field in I with defining polynomial x^2 + 1 with I = 1*I + Order in Number Field in I0 with defining polynomial x^2 + 1 with I0 = 1*I sage: ZZ[sqrt(5)] Order in Number Field in sqrt5 with defining polynomial x^2 - 5 with sqrt5 = 2.236067977499790? sage: ZZ[sqrt(2)+sqrt(3)] diff --git a/src/sage/groups/abelian_gps/values.py b/src/sage/groups/abelian_gps/values.py index 288fb95b93c..1220230f7c8 100644 --- a/src/sage/groups/abelian_gps/values.py +++ b/src/sage/groups/abelian_gps/values.py @@ -164,7 +164,7 @@ class AbelianGroupWithValuesEmbedding(Morphism): sage: embedding = Z4.values_embedding(); embedding Generic morphism: From: Multiplicative Abelian group isomorphic to C4 - To: Symbolic Ring + To: Number Field in I with defining polynomial x^2 + 1 with I = 1*I sage: embedding(1) 1 sage: embedding(g) @@ -184,7 +184,7 @@ def __init__(self, domain, codomain): sage: AbelianGroupWithValuesEmbedding(Z4, Z4.values_group()) Generic morphism: From: Multiplicative Abelian group isomorphic to C4 - To: Symbolic Ring + To: Number Field in I with defining polynomial x^2 + 1 with I = 1*I """ assert domain.values_group() is codomain from sage.categories.homset import Hom @@ -479,7 +479,7 @@ def values_group(self): sage: Z4 = AbelianGroupWithValues([I], [4]) sage: Z4.values_group() - Symbolic Ring + Number Field in I with defining polynomial x^2 + 1 with I = 1*I """ return self._values_group @@ -497,6 +497,6 @@ def values_embedding(self): sage: Z4.values_embedding() Generic morphism: From: Multiplicative Abelian group isomorphic to C4 - To: Symbolic Ring + To: Number Field in I with defining polynomial x^2 + 1 with I = 1*I """ return AbelianGroupWithValuesEmbedding(self, self.values_group()) diff --git a/src/sage/matrix/special.py b/src/sage/matrix/special.py index 5bc4e4e116e..bbaaf05034f 100644 --- a/src/sage/matrix/special.py +++ b/src/sage/matrix/special.py @@ -1233,7 +1233,7 @@ def elementary_matrix(arg0, arg1=None, **kwds): sage: E = elementary_matrix(4, row1=1, scale=I) sage: E.parent() - Full MatrixSpace of 4 by 4 dense matrices over Symbolic Ring + Full MatrixSpace of 4 by 4 dense matrices over Number Field in I with defining polynomial x^2 + 1 with I = 1*I sage: E = elementary_matrix(4, row1=1, scale=CDF(I)) sage: E.parent() diff --git a/src/sage/matrix/tests.py b/src/sage/matrix/tests.py index a284f86c37e..21b7920307a 100644 --- a/src/sage/matrix/tests.py +++ b/src/sage/matrix/tests.py @@ -52,7 +52,7 @@ [-1.00000000000000*I -1.00000000000000*I] [-1.00000000000000*I -1.00000000000000*I] sage: A.parent() - Full MatrixSpace of 2 by 2 dense matrices over Symbolic Ring + Full MatrixSpace of 2 by 2 dense matrices over Complex Field with 53 bits of precision We test an example determinant computation where LinBox gave an incorrect result:: diff --git a/src/sage/modules/matrix_morphism.py b/src/sage/modules/matrix_morphism.py index 73e304b2702..60591731fe9 100644 --- a/src/sage/modules/matrix_morphism.py +++ b/src/sage/modules/matrix_morphism.py @@ -213,9 +213,9 @@ def _call_with_args(self, x, args=(), kwds={}): sage: f((1, 0)) Traceback (most recent call last): ... - TypeError: Unable to coerce entries (=[1.00000000000000*I, 0]) to coefficients in Real Field with 53 bits of precision + TypeError: Unable to coerce entries (=[1.00000000000000*I, 0.000000000000000]) to coefficients in Real Field with 53 bits of precision sage: f((1, 0), coerce=False) - (1.00000000000000*I, 0) + (1.00000000000000*I, 0.000000000000000) """ if self.domain().is_ambient(): diff --git a/src/sage/rings/complex_mpc.pyx b/src/sage/rings/complex_mpc.pyx index 6ab1c04a026..3bcb2a3790d 100644 --- a/src/sage/rings/complex_mpc.pyx +++ b/src/sage/rings/complex_mpc.pyx @@ -422,7 +422,7 @@ cdef class MPComplexField_class(sage.rings.ring.Field): sage: C20(i*4, 7) Traceback (most recent call last): ... - TypeError: unable to coerce to a ComplexNumber: + TypeError: unable to coerce to a ComplexNumber: Each part can be set with strings (written in base ten):: diff --git a/src/sage/rings/number_field/number_field_element.pyx b/src/sage/rings/number_field/number_field_element.pyx index 33414cea37a..0c2499bfeeb 100644 --- a/src/sage/rings/number_field/number_field_element.pyx +++ b/src/sage/rings/number_field/number_field_element.pyx @@ -2324,7 +2324,7 @@ cdef class NumberFieldElement(FieldElement): sage: 2^a Traceback (most recent call last): ... - TypeError: an embedding into RR or CC must be specified + TypeError: no canonical coercion from Number Field in a with defining polynomial x^2 + 1 to Symbolic Ring """ if (isinstance(base, NumberFieldElement) and (isinstance(exp, Integer) or type(exp) is int or exp in ZZ)): diff --git a/src/sage/rings/number_field/number_field_element_quadratic.pyx b/src/sage/rings/number_field/number_field_element_quadratic.pyx index 05eb235854c..03873a7bb70 100644 --- a/src/sage/rings/number_field/number_field_element_quadratic.pyx +++ b/src/sage/rings/number_field/number_field_element_quadratic.pyx @@ -1858,7 +1858,7 @@ cdef class NumberFieldElement_quadratic(NumberFieldElement_absolute): -1/2 sage: SR(a) 1/2*I*sqrt(3) - 1/2 - sage: bool(I*a.imag() + a.real() == a) + sage: bool(QQbar(I)*QQbar(a.imag()) + QQbar(a.real()) == QQbar(a)) True TESTS:: diff --git a/src/sage/rings/polynomial/cyclotomic.pyx b/src/sage/rings/polynomial/cyclotomic.pyx index 06c5231466d..813249ad05c 100644 --- a/src/sage/rings/polynomial/cyclotomic.pyx +++ b/src/sage/rings/polynomial/cyclotomic.pyx @@ -283,9 +283,7 @@ def cyclotomic_value(n, x): Check that the issue with symbolic element in :trac:`14982` is fixed:: sage: a = cyclotomic_value(3, I) - sage: a.pyobject() - I - sage: parent(_) + sage: parent(a) Number Field in I with defining polynomial x^2 + 1 with I = 1*I """ n = ZZ(n) diff --git a/src/sage/rings/puiseux_series_ring_element.pyx b/src/sage/rings/puiseux_series_ring_element.pyx index ea9501c4c4b..50299bd7c2e 100644 --- a/src/sage/rings/puiseux_series_ring_element.pyx +++ b/src/sage/rings/puiseux_series_ring_element.pyx @@ -49,7 +49,7 @@ Mind the base ring. However, the base ring can be changed:: sage: I*q Traceback (most recent call last): ... - TypeError: unsupported operand parent(s) for *: 'Symbolic Ring' and 'Puiseux Series Ring in x over Rational Field' + TypeError: unsupported operand parent(s) for *: 'Number Field in I with defining polynomial x^2 + 1 with I = 1*I' and 'Puiseux Series Ring in x over Rational Field' sage: qz = q.change_ring(ZZ); qz x^(1/3) + x^(1/2) sage: qz.parent() diff --git a/src/sage/tests/books/computational-mathematics-with-sagemath/domaines_doctest.py b/src/sage/tests/books/computational-mathematics-with-sagemath/domaines_doctest.py index d602c2ab7af..e08cf0fb5bb 100644 --- a/src/sage/tests/books/computational-mathematics-with-sagemath/domaines_doctest.py +++ b/src/sage/tests/books/computational-mathematics-with-sagemath/domaines_doctest.py @@ -246,14 +246,14 @@ Sage example in ./domaines.tex, line 1036:: sage: I.parent() - Symbolic Ring + Number Field in I with defining polynomial x^2 + 1 with I = 1*I Sage example in ./domaines.tex, line 1043:: sage: (1.+2.*I).parent() - Symbolic Ring - sage: CC(1.+2.*I).parent() Complex Field with 53 bits of precision + sage: (1.+2.*SR(I)).parent() + Symbolic Ring Sage example in ./domaines.tex, line 1064:: @@ -340,7 +340,7 @@ Sage example in ./domaines.tex, line 1428:: sage: SR.category() - Category of commutative rings + Category of fields Sage example in ./domaines.tex, line 1482::