From 1a1efcf0a9bb212d39ff656b3f2fae4e7ae382ca Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Fr=C3=A9d=C3=A9ric=20Chapoton?= Date: Mon, 11 Oct 2021 20:37:42 +0200 Subject: [PATCH] some more links in catalog of posets --- src/sage/combinat/posets/poset_examples.py | 18 ++++++++++++++---- 1 file changed, 14 insertions(+), 4 deletions(-) diff --git a/src/sage/combinat/posets/poset_examples.py b/src/sage/combinat/posets/poset_examples.py index 38d5fc64c25..d23efbe51e9 100644 --- a/src/sage/combinat/posets/poset_examples.py +++ b/src/sage/combinat/posets/poset_examples.py @@ -65,10 +65,20 @@ :meth:`~Posets.YoungsLatticePrincipalOrderIdeal` | Return the principal order ideal of the partition `lam` in Young's Lattice. :meth:`~Posets.YoungFibonacci` | Return the Young-Fibonacci lattice up to rank `n`. +**Other available posets:** + +.. csv-table:: + :class: contentstable + :widths: 30, 70 + :delim: | + + :meth:`~sage.geometry.polyhedron.base.Polyhedron_base.face_lattice` | Return the face lattice of a polyhedron. + :meth:`~sage.geometry.polyhedron.combinatorial_polyhedron.base.CombinatorialPolyhedron.face_lattice` | Return the face lattice of a combinatorial polyhedron. + Constructions ------------- """ -#***************************************************************************** +# **************************************************************************** # Copyright (C) 2008 Peter Jipsen , # Franco Saliola # @@ -81,8 +91,8 @@ # # The full text of the GPL is available at: # -# http://www.gnu.org/licenses/ -#***************************************************************************** +# https://www.gnu.org/licenses/ +# **************************************************************************** from sage.misc.classcall_metaclass import ClasscallMetaclass import sage.categories.posets @@ -130,7 +140,7 @@ class Posets(metaclass=ClasscallMetaclass): sage: TestSuite(P).run() """ @staticmethod - def __classcall__(cls, n = None): + def __classcall__(cls, n=None): r""" Return either the category of all posets, or the finite enumerated set of all finite posets on ``n`` elements up to an