From e52eece87a4816fb59e81a0886b3a892b0040c47 Mon Sep 17 00:00:00 2001 From: Sebastian Oehms Date: Mon, 15 Jun 2020 22:57:49 +0200 Subject: [PATCH] 29716: correct _first_ngens --- src/sage/algebras/splitting_algebra.py | 33 +++++++------------------- 1 file changed, 9 insertions(+), 24 deletions(-) diff --git a/src/sage/algebras/splitting_algebra.py b/src/sage/algebras/splitting_algebra.py index 024851ea00e..634dd62da36 100644 --- a/src/sage/algebras/splitting_algebra.py +++ b/src/sage/algebras/splitting_algebra.py @@ -159,11 +159,11 @@ class SplittingAlgebra(PolynomialQuotientRing_domain): sage: all(t^3 -u*t^2 +v*t -w == 0 for t in roots) True sage: xi = ~x; xi - ((-w^-1)*x)*y + (-w^-1)*x^2 + ((w^-1)*u)*x + (w^-1)*x^2 + ((-w^-1)*u)*x + (w^-1)*v sage: ~xi == x True sage: ~y - (w^-1)*x^2 + ((-w^-1)*u)*x + (w^-1)*v + ((-w^-1)*x)*y + (-w^-1)*x^2 + ((w^-1)*u)*x sage: zi = ((w^-1)*x)*y; ~zi -y - x + u @@ -438,8 +438,13 @@ def _first_ngens(self, n): Splitting Algebra of x^3 + (-u^2 + v)*x^2 + (u + v)*x - 1 with roots [X, Y, -Y - X + u^2 - v] over Multivariate Polynomial Ring in u, v over Integer Ring + sage: S._first_ngens(4) + (X, Y, u, v) """ - return self.gens_recursive()[:n] + srts = self.splitting_roots() + k = len(srts)-1 + gens = srts[:k] + list(self.scalar_base_ring().gens()) + return tuple(gens[:n]) def _element_constructor_(self, x): r""" @@ -453,7 +458,7 @@ def _element_constructor_(self, x): sage: S(u + v) u + v sage: S(X*Y + X) - (X + 1)*Y + X*Y + X sage: TestSuite(S).run() # indirect doctest """ if isinstance(x, SplittingAlgebraElement): @@ -576,26 +581,6 @@ def splitting_roots(self): """ return self._splitting_roots - @cached_method - def gens_recursive(self): - r""" - Return all generators recursively. - - EXAMPLES:: - - sage: from sage.algebras.splitting_algebra import SplittingAlgebra - sage: L. = LaurentPolynomialRing(ZZ) - sage: x = polygen(L) - sage: S = SplittingAlgebra(x^3 - u*x^2 + v*x - w, ('X', 'Y')) - sage: S.gens_recursive() - (Y, X, u, v, w) - """ - base_ring = self.base_ring() - res = self.gens() - if isinstance(base_ring, SplittingAlgebra): - return res + base_ring.gens_recursive() - return res + base_ring.gens() - @cached_method def scalar_base_ring(self): r"""