From dd08bb1bac509eeb4cb5eb47ddbbc3f0073ba672 Mon Sep 17 00:00:00 2001 From: Matthias Koeppe Date: Thu, 15 Sep 2022 12:39:01 -0700 Subject: [PATCH] Link to msolve spkg page --- src/sage/rings/polynomial/msolve.py | 2 +- .../rings/polynomial/multi_polynomial_ideal.py | 16 ++++++++-------- 2 files changed, 9 insertions(+), 9 deletions(-) diff --git a/src/sage/rings/polynomial/msolve.py b/src/sage/rings/polynomial/msolve.py index a61874cbc24..be9c83fbb81 100644 --- a/src/sage/rings/polynomial/msolve.py +++ b/src/sage/rings/polynomial/msolve.py @@ -10,7 +10,7 @@ based on msolve. Currently the only supported operation is the computation of the variety of zero-dimensional ideal over the rationals. -Note that msolve must be installed separately. +Note that the `optional package msolve <../spkg/msolve.html>`_ must be installed. .. SEEALSO:: diff --git a/src/sage/rings/polynomial/multi_polynomial_ideal.py b/src/sage/rings/polynomial/multi_polynomial_ideal.py index e5d9edba487..728cc6d57d4 100644 --- a/src/sage/rings/polynomial/multi_polynomial_ideal.py +++ b/src/sage/rings/polynomial/multi_polynomial_ideal.py @@ -2391,7 +2391,8 @@ def variety(self, ring=None, *, algorithm="triangular_decomposition", proof=True {y: 0.3611030805286474?, x: 2.769292354238632?}, {y: 1, x: 1}] - We can also use the external program msolve to compute the variety. + We can also use the `optional package msolve <../spkg/msolve.html>`_ + to compute the variety. See :mod:`~sage.rings.polynomial.msolve` for more information. sage: I.variety(RBF, algorithm='msolve', proof=False) # optional - msolve @@ -2467,9 +2468,9 @@ def variety(self, ring=None, *, algorithm="triangular_decomposition", proof=True uses triangular decomposition, via Singular if possible, falling back on a toy implementation otherwise. - - With ``algorithm`` = ``"msolve"``, calls the external program - `msolve `_ (if available in the system - program search path). Note that msolve uses heuristics and therefore + - With ``algorithm`` = ``"msolve"``, uses the + `optional package msolve <../spkg/msolve.html>`_. + Note that msolve uses heuristics and therefore requires setting the ``proof`` flag to ``False``. See :mod:`~sage.rings.polynomial.msolve` for more information. """ @@ -4013,7 +4014,7 @@ def groebner_basis(self, algorithm='', deg_bound=None, mult_bound=None, prot=Fal Macaulay2's ``GroebnerBasis`` command with the strategy "MGB" (if available) 'msolve' - `msolve `_ (if available, degrevlex order, + `optional package msolve <../spkg/msolve.html>`_ (degrevlex order, prime fields) 'magma:GroebnerBasis' @@ -4139,9 +4140,8 @@ def groebner_basis(self, algorithm='', deg_bound=None, mult_bound=None, prot=Fal sage: I.groebner_basis('macaulay2:mgb') # optional - macaulay2 [c^3 + 28*c^2 - 37*b + 13*c, b^2 - 41*c^2 + 20*b - 20*c, b*c - 19*c^2 + 10*b + 40*c, a + 2*b + 2*c - 1] - Over prime fields of small characteristic, we can also use - `msolve `_ (if available in the system program - search path):: + Over prime fields of small characteristic, we can also use the + `optional package msolve <../spkg/msolve.html>`_:: sage: R. = PolynomialRing(GF(101), 3) sage: I = sage.rings.ideal.Katsura(R,3) # regenerate to prevent caching