diff --git a/src/sage/rings/polynomial/polynomial_integer_dense_flint.pyx b/src/sage/rings/polynomial/polynomial_integer_dense_flint.pyx index 43d56950476..de7748b14e6 100644 --- a/src/sage/rings/polynomial/polynomial_integer_dense_flint.pyx +++ b/src/sage/rings/polynomial/polynomial_integer_dense_flint.pyx @@ -712,8 +712,8 @@ cdef class Polynomial_integer_dense_flint(Polynomial): resultant of ``self`` and ``other``. As integer polynomials do not form a principal ideal domain, it is not - always possible given `p` and `q` to find a pair `s,t` sucht that - `gcd(a,b) = sa + tb`. Take `x+2` and `x+4` as an example for which the + always possible given `a` and `b` to find a pair `s,t` such that + `gcd(a,b) = sa + tb`. Take `a=x+2` and `b=x+4` as an example for which the gcd is `1` but the best you can achieve in the Bezout identity is `2`. If ``self`` and ``right`` are coprime as polynomials over the @@ -723,15 +723,6 @@ cdef class Polynomial_integer_dense_flint(Polynomial): EXAMPLES:: sage: P. = PolynomialRing(ZZ) - sage: F = (x^2 + 2)*x^3; G = (x^2+2)*(x-3) - sage: g, u, v = F.xgcd(G) - sage: g, u, v - (27*x^2 + 54, 1, -x^2 - 3*x - 9) - sage: u*F + v*G - 27*x^2 + 54 - - Here is a simple example where the result is not the gcd but the gcd - multiplied by the resultant:: sage: (x+2).xgcd(x+4) (2, -1, 1) @@ -740,6 +731,13 @@ cdef class Polynomial_integer_dense_flint(Polynomial): sage: (x+2).gcd(x+4) 1 + sage: F = (x^2 + 2)*x^3; G = (x^2+2)*(x-3) + sage: g, u, v = F.xgcd(G) + sage: g, u, v + (27*x^2 + 54, 1, -x^2 - 3*x - 9) + sage: u*F + v*G + 27*x^2 + 54 + sage: zero = P(0) sage: x.xgcd(zero) (x, 1, 0) @@ -765,7 +763,7 @@ cdef class Polynomial_integer_dense_flint(Polynomial): sage: R(2).xgcd(R.zero()) (2, 1, 0) """ - # trivial casess first + # trivial cases first if self.is_zero(): return (right, Integer(0), Integer(1)) elif right.is_zero():