-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils.py
635 lines (520 loc) · 32.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
import numpy as np
import torch, onnx, re
import os.path as osp
from copy import deepcopy
from aimet_torch.onnx_utils import OnnxSaver
from aimet_torch.quantsim import QuantizationSimModel
from aimet_torch.qc_quantize_op import QcQuantizeWrapper
def to_device(x, device):
return x.to(device) if isinstance(x, torch.Tensor) else tuple(to_device(y, device) for y in x)
def dump_onnx_and_encoding(sim_model, sim_sample, onnx_path, input_names):
OnnxSaver.create_onnx_model_with_pytorch_layer_names(onnx_path, QuantizationSimModel.get_original_model(sim_model.model.cpu()).cpu(), to_device(sim_sample, 'cpu'), False, {}, {'opset_version': 9, 'input_names': input_names, 'output_names': ['output', 'k_out', 'v_out']})
onnx_node_to_io_tensor_map, valid_param_set = OnnxSaver.get_onnx_node_to_io_tensor_names_map(onnx.load(onnx_path))
QuantizationSimModel._export_encodings_to_files(sim_model.model, osp.dirname(onnx_path), osp.splitext(osp.basename(onnx_path))[0], onnx_node_to_io_tensor_map, valid_param_set, sim_model._excluded_layer_names, propagate_encodings=True, quantizer_args=sim_model.quant_args)
def update_qcfg_sim(sim_model, sixteen_bit_input_activations, sixteen_bit_output_activations, config, num_blocks=None, new_bitwidth=16):
if num_blocks is None:
num_blocks = config.n_layer
for name, module in sim_model.model.named_modules():
if isinstance(module, QcQuantizeWrapper):
for i in range(len(module.input_quantizers)):
module.input_quantizers[i].enabled = True
if any(substring in name for substring in sixteen_bit_input_activations):
for i in range(len(module.input_quantizers)):
module.input_quantizers[i].bitwidth = new_bitwidth
if any(substring in name for substring in sixteen_bit_output_activations):
for i in range(len(module.output_quantizers)):
module.output_quantizers[i].bitwidth = new_bitwidth
if name.startswith('module_mul') and name != 'module_mul':
ind = name.split('_')[-1]
assert ind.isdigit()
ind = int(ind)
# if config.impl_sym_pch_as_slinear:
# if ind % 8 in [6, 7] or ind == num_blocks * 8 + 1:
# for i in range(len(module.input_quantizers)):
# module.input_quantizers[i].bitwidth = new_bitwidth
# for i in range(len(module.output_quantizers)):
# module.output_quantizers[i].bitwidth = new_bitwidth
# else:
# if ind % 7 in [6] or ind == num_blocks * 7 + 1:
# for i in range(len(module.input_quantizers)):
# module.input_quantizers[i].bitwidth = new_bitwidth
# for i in range(len(module.output_quantizers)):
# module.output_quantizers[i].bitwidth = new_bitwidth
if config.impl_sym_pch_as_slinear:
if ind % 8 in [7] or ind == num_blocks * 8 + 1:
for i in range(len(module.input_quantizers)):
module.input_quantizers[i].bitwidth = new_bitwidth
for i in range(len(module.output_quantizers)):
module.output_quantizers[i].bitwidth = new_bitwidth
# if name == "module_matmul":
# module.output_quantizers[0].bitwidth = new_bitwidth
if name.startswith('module_matmul') and name != 'module_matmul':
ind = name.split('_')[-1]
assert ind.isdigit()
ind = int(ind)
if ind % 2 == 1:
# softmax output
module.input_quantizers[0].bitwidth = new_bitwidth
else:
module.output_quantizers[0].bitwidth = new_bitwidth
if name.startswith('module_add') and name != 'module_add':
ind = name.split('_')[-1]
assert ind.isdigit()
ind = int(ind)
if ind % 5 in [2, 3, 4]:
# skip connection
for i in range(len(module.input_quantizers)):
module.input_quantizers[i].bitwidth = new_bitwidth
for i in range(len(module.output_quantizers)):
module.output_quantizers[i].bitwidth = new_bitwidth
if name.startswith('norm.module_mul'):
# layernorm before lm_head
for i in range(len(module.output_quantizers)):
module.output_quantizers[i].bitwidth = new_bitwidth
# for i in range(len(module.input_quantizers)):
# module.input_quantizers[i].enabled = False
# for i in range(len(module.output_quantizers)):
# module.input_quantizers[i].enabled = False
# if name.startswith('norm.module') or "lm_head" in name:
# for i in range(len(module.input_quantizers)):
# module.input_quantizers[i].enabled = False
# for i in range(len(module.output_quantizers)):
# module.input_quantizers[i].enabled = False
if "lm_head" in name:
for i in list(module.param_quantizers.keys()):
module.param_quantizers[i].bitwidth = 8
return sim_model
def disable_quant_sim(sim_model):
for name, module in sim_model.model.named_modules():
if isinstance(module, QcQuantizeWrapper):
for i in range(len(module.input_quantizers)):
module.input_quantizers[i].enabled = False
for i in range(len(module.output_quantizers)):
module.output_quantizers[i].enabled = False
for i in list(module.param_quantizers.keys()):
module.param_quantizers[i].enabled = False
return sim_model
def name_to_initializer(onnx_model):
name_to_initializer = {}
for ini in onnx_model.graph.initializer:
name_to_initializer[ini.name] = ini
return name_to_initializer
def name_to_node(onnx_model):
name_to_node = {}
for node in onnx_model.graph.node:
name_to_node[node.name] = node
return name_to_node
def output_to_node(onnx_model):
output_to_node = {}
for node in onnx_model.graph.node:
for output in node.output:
output_to_node[output] = node
return output_to_node
def align_onnx_model(onnx_direct_path, onnx_aimet_path, output_path):
# the key assumption here is that the outputs of the nodes in both onnx models are the same
onnx_model_direct = onnx.load(onnx_direct_path)
onnx_model_aimet = onnx.load(onnx_aimet_path)
direct_name_to_initializer = name_to_initializer(onnx_model_direct)
aimet_name_to_initializer = name_to_initializer(onnx_model_aimet)
direct_output_to_node = output_to_node(onnx_model_direct)
aimet_output_to_node = output_to_node(onnx_model_aimet)
for i in range(len(onnx_model_direct.graph.node)):
direct_node = onnx_model_direct.graph.node[i]
output_name = direct_node.output[0]
if output_name in aimet_output_to_node:
aimet_node = aimet_output_to_node[output_name]
elif 'reshape' in output_name and output_name.replace('Constant', 'Concat') in aimet_output_to_node:
aimet_node = aimet_output_to_node[output_name.replace('Constant', 'Concat')]
else:
print('{} is not in aimet_onnx'.format(output_name))
direct_node.name = aimet_node.name
# for nn.Linear
if direct_node.op_type == 'MatMul' and len(direct_node.input) == 2 and direct_node.input[1] in direct_name_to_initializer:
assert(aimet_node.op_type == direct_node.op_type and all(n1 == n2 for n1, n2 in zip(aimet_node.output, direct_node.output)) and aimet_node.input[0] == direct_node.input[0])
old_ini_name = direct_node.input[1]
old_ini = direct_name_to_initializer[old_ini_name]
old_ini.name = aimet_node.input[1]
direct_node.input[1] = aimet_node.input[1]
save_as_external_data = onnx_model_direct.ByteSize() >= onnx.checker.MAXIMUM_PROTOBUF
onnx.save(onnx_model_direct, output_path, save_as_external_data=save_as_external_data)
def incorporate_l2norm(onnx_path, output_path, n_layer=28):
#####################################################################
# Incorporate L2 norm
print('Incorporating LpNormalization...')
onnx_model_origin = onnx.load(onnx_path)
onnx_model_l2norm = deepcopy(onnx_model_origin)
name_to_node_map = name_to_node(onnx_model_origin)
OP_TYPES = ['Abs', 'Constant', 'Pow', 'ReduceSum', 'Clip', 'Shape', 'Expand', 'Div']
# OP_TYPES = ['ReduceL2', 'Clip', 'Shape', 'Expand', 'Div']
IN_TYPE, OUT_TYPE = 'Shape', 'Div'
#####################################################################
print('Collecting nodes related to L2 norm...')
rms_nodes = {}
for node_name in list(name_to_node_map.keys()):
node = name_to_node_map[node_name]
if 'module_normalize' in node_name and node.op_type in OP_TYPES:
rms_nodes[node.name] = node
def find_node(prefix, op_type):
for k in list(rms_nodes.keys()):
if prefix in k and rms_nodes[k].op_type == op_type:
return rms_nodes[k]
return None
print('Creating nodes for L2 norm...')
l2norm_nodes = []
for i in range(n_layer * 2 + 1):
prefix = 'module_normalize_{}'.format(i) if i > 0 else 'module_normalize'
input_node, output_node = find_node(prefix, IN_TYPE), find_node(prefix, OUT_TYPE)
if input_node is None or output_node is None:
continue
new_node_name = prefix + '_l2norm'
node = onnx.helper.make_node(name=new_node_name, op_type='LpNormalization', inputs=input_node.input, outputs=output_node.output, axis=-1, p=2)
l2norm_nodes.append(node)
# delete the old nodes
print('Delete old nodes...')
for i in range(len(onnx_model_l2norm.graph.node)-1, -1, -1):
node = onnx_model_l2norm.graph.node[i]
onnx_model_l2norm.graph.node.remove(node)
# add new nodes in topological order
print('Add new nodes in topological order...')
for i in range(len(onnx_model_origin.graph.node)):
node = onnx_model_origin.graph.node[i]
if node.name not in rms_nodes:
onnx_model_l2norm.graph.node.append(deepcopy(node))
elif node.op_type == OUT_TYPE:
onnx_model_l2norm.graph.node.append(l2norm_nodes.pop(0))
print('Exporting the l2norm onnx model...')
save_as_external_data = onnx_model_l2norm.ByteSize() >= onnx.checker.MAXIMUM_PROTOBUF
onnx.save(onnx_model_l2norm, output_path, save_as_external_data=save_as_external_data)
return onnx_model_l2norm
qnn_data_type_to_np = {
0x0008: np.int8,
0x0016: np.int16,
0x0032: np.int32,
0x0064: np.int64,
0x0108: np.uint8,
0x0116: np.uint16,
0x0132: np.uint32,
0x0164: np.uint64,
0x0216: np.float16,
0x0232: np.float32,
0x0308: np.int8,
0x0316: np.int16,
0x0332: np.int32,
0x0408: np.uint8,
0x0416: np.uint16,
0x0432: np.uint32,
0x0508: np.bool_
}
# qnn_data_type_to_np = {
# 8: np.int8,
# 22: np.int16,
# 50: np.int32,
# 100: np.int64,
# 264: np.uint8,
# 278: np.uint16,
# 306: np.uint32,
# 356: np.uint64,
# 534: np.float16,
# 562: np.float32,
# 776: np.int8,
# 790: np.int16,
# 818: np.int32,
# 1032: np.uint8,
# 1046: np.uint16,
# 1074: np.uint32,
# 1288: np.bool_
# }
def update_encodings_from_min_max(fmin, fmax, encoding, field):
bitwidth = int(encoding[field]["bitwidth"])
qmax = 2 ** bitwidth - 1
scale = (fmax-fmin)/qmax
offset = int((fmin*qmax)/(fmax-fmin))
encoding[field]["max"], encoding[field]["min"], encoding[field]["scale"], encoding[field]["offset"] = fmax, fmin, scale, offset
return encoding
def prefix_match_linear(dictionary, prefix):
matches = []
for key in dictionary.keys():
if key.startswith(prefix):
matches.append(key)
assert(len(matches) == 1)
return matches
def override_encoding(src_dict, tgt_dict, src_name, tgt_name, src_field, tgt_field, tgt_subfield, factor=1.0):
assert(src_name in src_dict)
assert(tgt_name in tgt_dict)
fmin, fmax = src_dict[src_name][src_field]
encoding = tgt_dict[tgt_name][tgt_field]
fmin, fmax = fmin * factor, fmax * factor
tgt_dict[tgt_name][tgt_field] = update_encodings_from_min_max(fmin, fmax, encoding, tgt_subfield)
return tgt_dict
def update_encodings(ori_encodings, new_act_dict, num_blocks, q_proj_factor, config):
ori_act_dict = ori_encodings["activation_encodings"]
all_keys = set(ori_act_dict.keys())
print("num of nodes (before)", len(all_keys))
for i in range(num_blocks):
# input norm
tgt_name = prefix_match_linear(ori_act_dict, f"layers.{i}.input_layernorm.module_normalize")[0]
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.input_layernorm", tgt_name, "input", "input", "0")
all_keys.discard(tgt_name)
tgt_name = prefix_match_linear(ori_act_dict, f"layers.{i}.input_layernorm.module_mul")[0]
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.input_layernorm", tgt_name, "output", "output", "0")
all_keys.discard(tgt_name)
# post norm
tgt_name = prefix_match_linear(ori_act_dict, f"layers.{i}.post_attention_layernorm.module_normalize")[0]
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.post_attention_layernorm", tgt_name, "input", "input", "0")
all_keys.discard(tgt_name)
tgt_name = prefix_match_linear(ori_act_dict, f"layers.{i}.post_attention_layernorm.module_mul")[0]
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.post_attention_layernorm", tgt_name, "output", "output", "0")
all_keys.discard(tgt_name)
# attn proj
# q_proj
tgt_name = prefix_match_linear(ori_act_dict, f"layers.{i}.self_attn.q_proj")[0]
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.input_layernorm", tgt_name, "output", "input", "0")
tgt_name = prefix_match_linear(ori_act_dict, f"layers.{i}.self_attn.q_proj")[0]
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.q_proj", tgt_name, "output", "output", "0", q_proj_factor)
all_keys.discard(tgt_name)
# k_proj
tgt_name = prefix_match_linear(ori_act_dict, f"layers.{i}.self_attn.k_proj")[0]
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.input_layernorm", tgt_name, "output", "input", "0")
tgt_name = prefix_match_linear(ori_act_dict, f"layers.{i}.self_attn.k_proj")[0]
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.k_proj", tgt_name, "output", "output", "0")
all_keys.discard(tgt_name)
# v_proj
tgt_name = prefix_match_linear(ori_act_dict, f"layers.{i}.self_attn.v_proj")[0]
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.input_layernorm", tgt_name, "output", "input", "0")
tgt_name = prefix_match_linear(ori_act_dict, f"layers.{i}.self_attn.v_proj")[0]
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.v_proj", tgt_name, "output", "output", "0")
all_keys.discard(tgt_name)
# o_proj
tgt_name = prefix_match_linear(ori_act_dict, f"layers.{i}.self_attn.o_proj")[0]
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.o_proj", tgt_name, "output", "output", "0")
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.pv_bmm", tgt_name, "output", "input", "0")
all_keys.discard(tgt_name)
# mlp
tgt_name = prefix_match_linear(ori_act_dict, f"layers.{i}.mlp.w1")[0]
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.post_attention_layernorm", tgt_name, "output", "input", "0")
tgt_name = prefix_match_linear(ori_act_dict, f"layers.{i}.mlp.w1")[0]
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.mlp.w1", tgt_name, "output", "output", "0")
all_keys.discard(tgt_name)
tgt_name = prefix_match_linear(ori_act_dict, f"layers.{i}.mlp.w3")[0]
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.post_attention_layernorm", tgt_name, "output", "input", "0")
tgt_name = prefix_match_linear(ori_act_dict, f"layers.{i}.mlp.w3")[0]
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.mlp.w3", tgt_name, "output", "output", "0")
all_keys.discard(tgt_name)
# act
tgt_name = prefix_match_linear(ori_act_dict, f"layers.{i}.mlp.act.sigmoid")
if len(tgt_name) > 0:
tgt_name = tgt_name[0]
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.mlp.w1", tgt_name, "output", "input", "0")
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.mlp.act_fn", tgt_name, "input2", "output", "0")
all_keys.discard(tgt_name)
tgt_name = prefix_match_linear(ori_act_dict, f"layers.{i}.mlp.act.mul")[0]
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.mlp.w1", tgt_name, "output", "input", "0")
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.mlp.act_fn", tgt_name, "input2", "input", "1")
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.mlp.act_fn", tgt_name, "output", "output", "0")
# ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.mlp.w2", tgt_name, "input", "output", "0")
all_keys.discard(tgt_name)
if config.impl_sym_pch_as_slinear:
tgt_name = prefix_match_linear(ori_act_dict, f"layers.{i}.mlp.w2.linear")[0]
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.mlp.w2", tgt_name, "input", "input", "0")
else:
tgt_name = prefix_match_linear(ori_act_dict, f"layers.{i}.mlp.w2")[0]
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.mlp.w2", tgt_name, "input", "input", "0")
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.mlp.w2", tgt_name, "output", "output", "0")
all_keys.discard(tgt_name)
######################################################################################################################################
# qk_bmm and pv_bmm
tgt_name = f"module_matmul" if i == 0 else f"module_matmul_{2*i}"
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.qk_bmm", tgt_name, "input", "input", "0", q_proj_factor)
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.qk_bmm", tgt_name, "input2", "input", "1")
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.qk_bmm", tgt_name, "output", "output", "0", q_proj_factor)
all_keys.discard(tgt_name)
tgt_name = f"module_matmul_{2*i+1}"
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.pv_bmm", tgt_name, "input", "input", "0")
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.pv_bmm", tgt_name, "input2", "input", "1")
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.pv_bmm", tgt_name, "output", "output", "0")
all_keys.discard(tgt_name)
#######################################################################################################################################
# softmax
tgt_name = prefix_match_linear(ori_act_dict, f"layers.{i}.self_attn.softmax")[0]
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.pv_bmm", tgt_name, "input", "output", "0")
all_keys.discard(tgt_name)
#######################################################################################################################################
# add
# three additions are not overrided: add_mask, and two in ROPE
tgt_name = f"module_add_{5 * i + 3}"
# ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.input_layernorm", tgt_name, "input", "input", "0")
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.o_proj", tgt_name, "output", "input", "1")
# ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.post_attention_layernorm", tgt_name, "input", "output", "0")
all_keys.discard(tgt_name)
tgt_name = f"module_add_{5 * i + 4}"
# ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.post_attention_layernorm", tgt_name, "input", "input", "0")
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.mlp.w2", tgt_name, "output", "input", "1")
all_keys.discard(tgt_name)
# if i > 0:
# tgt_name = f"module_add_{5 * (i - 1) + 4}"
# ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.input_layernorm", tgt_name, "input", "output", "0")
#######################################################################################################################################
# reshape
tgt_name = f"layers.{i}.self_attn.module_reshape" if i == 0 else f"layers.{i}.self_attn.module_reshape_{6*i}"
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.q_proj", tgt_name, "output", "input", "0", q_proj_factor)
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.q_proj", tgt_name, "output", "output", "0", q_proj_factor)
all_keys.discard(tgt_name)
tgt_name = f"layers.{i}.self_attn.module_reshape_{6*i+1}"
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.k_proj", tgt_name, "output", "input", "0")
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.k_proj", tgt_name, "output", "output", "0")
all_keys.discard(tgt_name)
tgt_name = f"layers.{i}.self_attn.module_reshape_{6*i+2}"
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.v_proj", tgt_name, "output", "input", "0")
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.v_proj", tgt_name, "output", "output", "0")
all_keys.discard(tgt_name)
tgt_name = f"layers.{i}.self_attn.module_reshape_{6*i+3}"
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.k_proj", tgt_name, "output", "input", "0")
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.k_proj", tgt_name, "output", "output", "0")
all_keys.discard(tgt_name)
tgt_name = f"layers.{i}.self_attn.module_reshape_{6*i+4}"
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.v_proj", tgt_name, "output", "input", "0")
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.v_proj", tgt_name, "output", "output", "0")
all_keys.discard(tgt_name)
tgt_name = f"layers.{i}.self_attn.module_reshape_{6*i+5}"
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.pv_bmm", tgt_name, "output", "input", "0")
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.pv_bmm", tgt_name, "output", "output", "0")
all_keys.discard(tgt_name)
#######################################################################################################################################
# transpose
tgt_name = f"layers.{i}.self_attn.module_transpose" if i == 0 else f"layers.{i}.self_attn.module_transpose_{5*i}"
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.q_proj", tgt_name, "output", "input", "0", q_proj_factor)
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.q_proj", tgt_name, "output", "output", "0", q_proj_factor)
all_keys.discard(tgt_name)
tgt_name = f"layers.{i}.self_attn.module_transpose_{5*i+1}"
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.k_proj", tgt_name, "output", "input", "0")
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.k_proj", tgt_name, "output", "output", "0")
all_keys.discard(tgt_name)
tgt_name = f"layers.{i}.self_attn.module_transpose_{5*i+2}"
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.v_proj", tgt_name, "output", "input", "0")
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.v_proj", tgt_name, "output", "output", "0")
all_keys.discard(tgt_name)
tgt_name = f"layers.{i}.self_attn.module_transpose_{5*i+3}"
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.k_proj", tgt_name, "output", "input", "0")
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.k_proj", tgt_name, "output", "output", "0")
all_keys.discard(tgt_name)
tgt_name = f"layers.{i}.self_attn.module_transpose_{5*i+4}"
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.pv_bmm", tgt_name, "output", "input", "0")
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.pv_bmm", tgt_name, "output", "output", "0")
all_keys.discard(tgt_name)
#######################################################################################################################################
# concat
tgt_name = "module_cat" if i == 0 else f"module_cat_{2*i}"
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.q_proj", tgt_name, "output", "input", "0", q_proj_factor)
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.q_proj", tgt_name, "output", "input", "1", q_proj_factor)
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.q_proj", tgt_name, "output", "output", "0", q_proj_factor)
all_keys.discard(tgt_name)
tgt_name = f"module_cat_{2*i+1}"
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.k_proj", tgt_name, "output", "input", "0")
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.k_proj", tgt_name, "output", "input", "1")
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.k_proj", tgt_name, "output", "output", "0")
all_keys.discard(tgt_name)
#######################################################################################################################################
# mul
extra_mul = 1 if config.impl_sym_pch_as_slinear else 0
tgt_name = f"module_mul_{(7+extra_mul)*i+1}"
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.q_proj", tgt_name, "output", "input", "0", q_proj_factor)
all_keys.discard(tgt_name)
tgt_name = f"module_mul_{(7+extra_mul)*i+2}"
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.q_proj", tgt_name, "output", "input", "0", q_proj_factor)
all_keys.discard(tgt_name)
tgt_name = f"module_mul_{(7+extra_mul)*i+3}"
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.k_proj", tgt_name, "output", "input", "0")
all_keys.discard(tgt_name)
tgt_name = f"module_mul_{(7+extra_mul)*i+4}"
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.self_attn.k_proj", tgt_name, "output", "input", "0")
all_keys.discard(tgt_name)
tgt_name = f"module_mul_{(7+extra_mul)*i+6}"
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.mlp.act_fn", tgt_name, "output", "input", "0")
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.mlp.w3", tgt_name, "output", "input", "1")
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.mlp.w2", tgt_name, "input", "output", "0")
all_keys.discard(tgt_name)
if config.impl_sym_pch_as_slinear:
tgt_name = f"module_mul_{(7+extra_mul)*i+7}"
ori_act_dict = override_encoding(new_act_dict, ori_act_dict, f"model.layers.{i}.mlp.w2", tgt_name, "output", "output", "0")
all_keys.discard(tgt_name)
print("num of nodes (after)", len(all_keys))
for x in all_keys:
print(f"not overriding {x}")
ori_encodings["activation_encodings"] = ori_act_dict
return ori_encodings
_qnn_parentheses = re.compile(r'\(.*?\)')
def norm_unit(value, unit):
''' Convert to milliseconds
'''
if unit == 'ms':
return value
elif unit == 's':
return value * 1000
elif unit == 'us':
return value / 1000
elif unit == 'ns':
return value / 1000000
elif unit in ['cycles', 'count', 'inf/sec']:
return value
elif unit == 'k':
return value * 1e3
elif unit == 'M':
return value * 1e6
elif unit == 'G':
return value * 1e9
elif unit == 'T':
return value * 1e12
elif not unit:
return value
else:
raise ValueError(f'Unknown time unit: {unit!r}')
def parse_profile_viewer(out):
section = None
layers_timing = {}
parsed = {}
for line in out.splitlines():
line = line.rstrip()
if not line:
continue
if line.startswith(' '):
# Layer info
if section != 'Execute':
print(f'Found 2nd indentation level in section other than Execute ({section}), ignoring....')
continue
line = line[8:]
name, timing = tuple(l.strip() for l in line.rsplit(':', maxsplit=1))
num, unit = tuple(l.strip() for l in timing.split(' ') if l)
timing = norm_unit(int(num), unit)
name = _qnn_parentheses.sub('', name)
if ':' in name:
name = name.split(':')[0]
if ' ' in name:
name = name.split(' ')[0]
layers_timing[name] = timing
elif line.startswith(' '):
line = line[4:]
name, timing = tuple(l.strip() for l in line.rsplit(':', maxsplit=1))
num, unit = tuple(l.strip() for l in timing.split(' ') if l)
timing = norm_unit(float(num), unit)
if name == 'NetRun':
sub = 'Total'
else:
if name.startswith('Backend ('):
sub = name[name.find('(')+1:name.rfind(')')]
else:
sub = name
sub = _qnn_parentheses.sub('', sub)
parsed.setdefault(section, {})[sub] = timing
else:
if line == 'Init Stats:':
section = 'Init'
elif line == 'Compose Graphs Stats:':
section = 'Build Graph'
elif line == 'Finalize Stats:':
section = 'Finalize'
elif line == 'De-Init Stats:':
section = 'De-Init'
elif line == 'Total Inference Time:':
section = 'Execute'
parsed['Layer Times'] = layers_timing
return parsed