-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathbase.py
80 lines (62 loc) · 2.72 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import tensorflow as tf
import numpy as np
import pandas as pd
import pickle
import argparse
import os
from tensorflow.python.client import device_lib
from model import AudioEmbeddingModel, DataLoading
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1'
def get_available_gpus():
local_device_protos = device_lib.list_local_devices()
count = len([x.name for x in local_device_protos if x.device_type == 'GPU'])
print("Number of GPU : ", count)
def test_id_loss(_id,string):
x_train, y_train = load_data(ids[_id:_id+1])
y_predicted = my_model.predict(x_train)
print(string, loss(y_predicted,y_train[-1:]))
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--from_id", type = int, default = 0)
parser.add_argument("--to_id", type = int, default = 100000)
parser.add_argument("--epochs", type = int, default = 3)
parser.add_argument("--start_epoch", type = int, default = 39)
parser.add_argument("--batchsize", type = int, default = 1)
parser.add_argument("--num_gpu", type = int, default = 1)
parser.add_argument("--num_samples", type = int, default = 100)
parser.add_argument("--load_model", type = str, default = "models/final.h5")
parser.add_argument("--save_model", type = str, default = "models/")
parser.add_argument("--train", action="store_true")
parser.add_argument("--verbose", action="store_true")
args = parser.parse_args()
audemb_model = AudioEmbeddingModel(from_id=args.from_id,to_id=args.to_id)
if args.verbose:
get_available_gpus()
audemb_model.model_summary()
if args.num_gpu > 1:
audemb_model.multi_gpu_model(args.num_gpu)
if len(args.load_model) != 0:
if os.path.isfile(args.load_model):
audemb_model.load_weights(args.load_model)
print("Model Loaded")
else:
print("Model not present in the given path")
exit()
if len(args.save_model) == 0:
print("Path to save the model is not specified")
exit()
else :
if not os.path.exists(args.save_model):
os.makedirs(args.save_model)
ids = DataLoading.load_ids(args.from_id, args.to_id)
train_ids ,valid_ids,test_ids = DataLoading.split_data(ids)
valid_ids,test_ids=test_ids,valid_ids
if args.train:
audemb_model.train(train_ids,valid_ids,args.batchsize,args.save_model,start_epoch = args.start_epoch, num_epoch = args.epochs, num_samples = args.num_samples)
audemb_model.get_L1_L2_loss(test_ids,batchsize=args.batchsize,test_str=' test')
audemb_model.get_L1_L2_loss(train_ids,batchsize=args.batchsize,test_str=' train')
audemb_model.Test_accuracy(train_ids,ids,batchsize=args.batchsize,test_str=' train')
audemb_model.Test_accuracy(valid_ids,ids,batchsize=args.batchsize,test_str=' valid')
audemb_model.Test_accuracy(test_ids,ids,batchsize=args.batchsize,test_str=' test')
if __name__ == "__main__":
main()