-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgetModel.py
99 lines (82 loc) · 3.29 KB
/
getModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import pandas as pd
from gensim.models import Word2Vec
from gensim.models import fasttext
def getW2vModel(load='', train='', modelname='', min_word=200):
""" Trains or loads a word2vec model. Input must be a list of strings.
Keyword arguments:
train -- when provided, trains, saved (in binary) and returns a model
load -- when provided, loads and returns a model (usually stored in .model.bin)
modelname -- name of the saved model
min_word -- the minimum amount of occurances of words to be included in the model. Useful for filtering out bloat.
"""
if train != '':
print('Training ' + modelname)
# train model
# neighbourhood?
model = Word2Vec(train, min_count=min_word)
# pickle the entire model to disk, so we can load&resume training later
model.save(modelname + '.model')
#store the learned weights, in a format the original C tool understands
model.wv.save_word2vec_format(modelname + '.model.bin', binary=True)
return model
else:
model = Word2Vec.load(load)
return model
def getFastTextModel(train='', load='', modelname='', min_word=200):
if train != '':
# train model
print(train[:10])
model = fasttext.FastText(sentences=train, min_count=min_word)
model.save('word_embeddings/fasttext/models/' + modelname + '.model.bin')
# pickle the entire model to load and resume training later
return model
elif load != '':
model = fasttext.FastText.load('word_embeddings/fasttext/models/' + load)
return model
def getGloveModel(train='', load='', modelname='', min_word=''):
if train != '':
# train model
cooccur = glove.Corpus()
cooccur.fit(train, window=5)
# and train GloVe model itself, using 10 epochs
model_glove = glove.Glove(no_components=100, learning_rate=0.05)
model_glove.fit(cooccur.matrix, epochs=10)
model_glove.save('word_embeddings/fasttext/models/' + modelname + '.model.bin')
# pickle the entire model to load and resume training later
return model
elif load != '':
model = fasttext.FastText.load('word_embeddings/fasttext/models/' + load)
return model
def getWordEmbeddingSimilars(word, li_modelnames, li_months, topn=25, min_word=200):
"""
Creates a csv usable for RankFlow with similar terms in a word embedding model
:param word, string, The word to get similarities with.
:prarm li_modelnames, list, A list of filenames for word embedding models.
Should be in chronological order.
:param li_months, list, A list of months the filenames correspond to.
:param topn, int, Amount of similar words to get.
"""
df_similars = pd.DataFrame()
for index, modelname in enumerate(li_modelnames):
print(modelname)
model = getW2vModel(modelname)
month = li_months[index]
li_similarwords = []
li_weights = []
try:
similars = model.wv.most_similar(positive=[word], topn = 200)
total_words = 0
for words in similars:
if model.wv.vocab[words[0]].count >= min_word:
print(model.wv.vocab[words[0]].count)
li_similarwords.append(words[0])
li_weights.append(int(words[1] * 100))
total_words = total_words + 1
if total_words == topn:
break
#df_similars['ratio-' + month] = [model.wv.vocab[words[0]].count for words in similars]
except KeyError:
df_similars[month] = ['n'] * topn
df_similars[month] = li_similarwords
df_similars['ratio-' + month] = li_weights
return df_similars