-
Notifications
You must be signed in to change notification settings - Fork 22
/
onnx_utils.py
189 lines (160 loc) · 7.14 KB
/
onnx_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import shutil
from pathlib import Path
from typing import Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from .utils import is_onnx_available, logging
if is_onnx_available():
import onnxruntime as ort
ONNX_WEIGHTS_NAME = "model.onnx"
logger = logging.get_logger(__name__)
class OnnxRuntimeModel:
base_model_prefix = "onnx_model"
def __init__(self, model=None, **kwargs):
logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future.")
self.model = model
self.model_save_dir = kwargs.get("model_save_dir", None)
self.latest_model_name = kwargs.get("latest_model_name", "model.onnx")
def __call__(self, **kwargs):
inputs = {k: np.array(v) for k, v in kwargs.items()}
return self.model.run(None, inputs)
@staticmethod
def load_model(path: Union[str, Path], provider=None):
"""
Loads an ONNX Inference session with an ExecutionProvider. Default provider is `CPUExecutionProvider`
Arguments:
path (`str` or `Path`):
Directory from which to load
provider(`str`, *optional*):
Onnxruntime execution provider to use for loading the model, defaults to `CPUExecutionProvider`
"""
if provider is None:
logger.info("No onnxruntime provider specified, using CPUExecutionProvider")
provider = "CPUExecutionProvider"
return ort.InferenceSession(path, providers=[provider])
def _save_pretrained(self, save_directory: Union[str, Path], file_name: Optional[str] = None, **kwargs):
"""
Save a model and its configuration file to a directory, so that it can be re-loaded using the
[`~optimum.onnxruntime.modeling_ort.ORTModel.from_pretrained`] class method. It will always save the
latest_model_name.
Arguments:
save_directory (`str` or `Path`):
Directory where to save the model file.
file_name(`str`, *optional*):
Overwrites the default model file name from `"model.onnx"` to `file_name`. This allows you to save the
model with a different name.
"""
model_file_name = file_name if file_name is not None else ONNX_WEIGHTS_NAME
src_path = self.model_save_dir.joinpath(self.latest_model_name)
dst_path = Path(save_directory).joinpath(model_file_name)
if not src_path.samefile(dst_path):
shutil.copyfile(src_path, dst_path)
def save_pretrained(
self,
save_directory: Union[str, os.PathLike],
**kwargs,
):
"""
Save a model to a directory, so that it can be re-loaded using the [`~OnnxModel.from_pretrained`] class
method.:
Arguments:
save_directory (`str` or `os.PathLike`):
Directory to which to save. Will be created if it doesn't exist.
"""
if os.path.isfile(save_directory):
logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
return
os.makedirs(save_directory, exist_ok=True)
# saving model weights/files
self._save_pretrained(save_directory, **kwargs)
@classmethod
def _from_pretrained(
cls,
model_id: Union[str, Path],
use_auth_token: Optional[Union[bool, str, None]] = None,
revision: Optional[Union[str, None]] = None,
force_download: bool = False,
cache_dir: Optional[str] = None,
file_name: Optional[str] = None,
provider: Optional[str] = None,
**kwargs,
):
"""
Load a model from a directory or the HF Hub.
Arguments:
model_id (`str` or `Path`):
Directory from which to load
use_auth_token (`str` or `bool`):
Is needed to load models from a private or gated repository
revision (`str`):
Revision is the specific model version to use. It can be a branch name, a tag name, or a commit id
cache_dir (`Union[str, Path]`, *optional*):
Path to a directory in which a downloaded pretrained model configuration should be cached if the
standard cache should not be used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
file_name(`str`):
Overwrites the default model file name from `"model.onnx"` to `file_name`. This allows you to load
different model files from the same repository or directory.
provider(`str`):
The ONNX runtime provider, e.g. `CPUExecutionProvider` or `CUDAExecutionProvider`.
kwargs (`Dict`, *optional*):
kwargs will be passed to the model during initialization
"""
model_file_name = file_name if file_name is not None else ONNX_WEIGHTS_NAME
# load model from local directory
if os.path.isdir(model_id):
model = OnnxRuntimeModel.load_model(os.path.join(model_id, model_file_name), provider=provider)
kwargs["model_save_dir"] = Path(model_id)
# load model from hub
else:
# download model
model_cache_path = hf_hub_download(
repo_id=model_id,
filename=model_file_name,
use_auth_token=use_auth_token,
revision=revision,
cache_dir=cache_dir,
force_download=force_download,
)
kwargs["model_save_dir"] = Path(model_cache_path).parent
kwargs["latest_model_name"] = Path(model_cache_path).name
model = OnnxRuntimeModel.load_model(model_cache_path, provider=provider)
return cls(model=model, **kwargs)
@classmethod
def from_pretrained(
cls,
model_id: Union[str, Path],
force_download: bool = True,
use_auth_token: Optional[str] = None,
cache_dir: Optional[str] = None,
**model_kwargs,
):
revision = None
if len(str(model_id).split("@")) == 2:
model_id, revision = model_id.split("@")
return cls._from_pretrained(
model_id=model_id,
revision=revision,
cache_dir=cache_dir,
force_download=force_download,
use_auth_token=use_auth_token,
**model_kwargs,
)