-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain_GCN.py
48 lines (40 loc) · 1.88 KB
/
train_GCN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import os
import time
from tqdm import tqdm
from graphino.GCN.GCN_model import GCN
# Training settings
from graphino.training import evaluate, train_epoch, get_dataloaders, get_dirs
from utilities.hyperparams_and_args_GCN import get_argparser
from utilities.utils import set_seed
from utilities.model_logging import update_tqdm, save_model
from utilities.optimization import get_optimizer, get_loss
params, net_params = get_argparser()
set_seed(params['seed'])
(adj, static_feats, _), (trainloader, valloader, testloader) = get_dataloaders(params, net_params)
ckpt_dir, log_dir = get_dirs(params, net_params)
# Model and optimizer
model = GCN(net_params, static_feat=static_feats, adj=adj)
optimizer = get_optimizer(params['optimizer'], model, lr=params['lr'], weight_decay=params['weight_decay'], nesterov=params['nesterov'])
criterion = get_loss(params['loss'])
# Train model
device = 'cuda'
t_total = time.time()
model = model.to(device)
val_stats = None
print('Params', params)
print('Net params', net_params)
with tqdm(range(1, params['epochs'] + 1)) as t:
for epoch in t:
t.set_description('Graphino')
start_t = time.time()
loss, num_edges = train_epoch(trainloader, model, criterion, optimizer, device, epoch)
duration = time.time() - start_t
if valloader is not None:
_, val_stats = evaluate(valloader, model, device=device)
_, test_stats = evaluate(testloader, model, device=device)
update_tqdm(t, loss, n_edges=num_edges, time=duration, val_stats=val_stats, test_stats=test_stats)
if epoch == 50:
print('Saving model at epoch', epoch)
save_model(model, ckpt_dir, params, net_params, optimizer, epoch, ID=f'{epoch}ep_model.pkl')
save_model(model, ckpt_dir, params, net_params, optimizer, epoch, ID='last_model.pkl')
print("Optimization Finished! Total time elapsed: {:.4f}s".format(time.time() - t_total))