Skip to content

Latest commit

 

History

History
133 lines (100 loc) · 5.65 KB

README.md

File metadata and controls

133 lines (100 loc) · 5.65 KB

Logo

Türkiye Mobese Görüntü Takip

Türkiye Mobese görüntülerinde OPENCV ve Yolo ile takip sistemi

Multiple Object Tracking System in Turkish Mobese with OPENCV and Yolo
Explore the docs » Projeyi keşfet

Table of Contents / İçerik Bölümü
  1. About the Project / Proje Hakkında
  2. Getting Started / Başlangıç
  3. Usage / Kullanım
  4. Roadmap / Yol Haritası
  5. Contributing / Katkı
  6. License / Lisans

If you are having any os compatiblity issue, let me know. I will try to fix as soon as possible so let's explore the docs.

Herhangi bir işletim sistemi uyumsuzluğu varsa, bana bildirin. En kısa sürede düzeltmeye çalışacağım, hadi dökümanı inceleyelim.

About the Project / Proje Hakkında

Currently this project have 171 cameras. | Projeye yüklü 171 canlı mobese görüntüsü vardır.

İstanbul > 44 Canlı Yayın          |   İstanbul > 44 Live CCTV Footage
İzmir > 76 Canlı Yayın             |   İzmir > 76 Live CCTV Footage
Tekirdag > 1 Canlı Yayın           |   Tekirdag > 1 Live CCTV Footage
Konya > 32 Canlı Yayın             |   Konya > 32 Live CCTV Footage
Ordu > 21 Canlı Yayın              |   Ordu > 21 Live CCTV Footage

This project implements Turkish Mobese CCTV footages detection classifier using pretrained yolov4-tiny models. If you trust your computer performance you can download yolov4 models too. The yolov4 models are taken from the official yolov4 paper which was released in April 2020 and the yolov4 implementation is from darknet.

Bu proje, önceden eğitilmiş yolov4-tiny modellerini kullanarak Türk Mobese Canlı CCTV görüntülerine algılama sınıflandırıcısını uygular. Bilgisayarınızın performansına güveniyorsanız yolov4 modellerinide indirebilirsiniz. Yolov4 modelleri, Nisan 2020'de yayınlanan resmi yolov4 belgesinden alınmıştır ve Yolov4 uygulaması darknet'tendir.

Built With / Kullanılanlar

Getting Started / Başlangıç

To get a local copy up and running follow these simple steps.

Kendi bilgisayarınızda çalıştırmak için bu basit adımları izleyin.

Installation / Kurulum

  1. Clone the repo | Projeyi indir.
    git clone https://github.com/samet-g/mobese.git
  2. Install Python packages | Gerekli Python paketlerini yükle.
    pip3 install -r requirements.txt

Usage / Kullanım

  • Run with Python or Download the .exe file.
  • Python kullanarak çalıştır veya .exe dosyasını indir
python3 main.py | just run .exe file

Roadmap / Yol Haritası

See the open issues for a list of proposed features
It should be good use cctv cameras in city with Shodan API or make GUI.

Sorunlar için açık sorunları kontrol edin.
Shodan API ile esnaf güvenlik kamerası kullanmak veya GUI yapmak iyi olur.

Contributing / Katkı

Contributions are what make the open source community such an amazing place to be learn, inspire, and create. Any contributions you make are greatly appreciated especially Roadmap / Yol Haritası check this to-do list.

Katkılar, açık kaynak topluluğu için büyük nimettir özellikle Roadmap / Yol Haritası kısmındaki yapılacak-listesini kontrol edin.

  1. Fork the Project | Projeyi forkla.
  2. Create your Feature Branch | Katkıda Bulun
    git checkout -b feature/YeniOzellik
  3. Commit your Changes | Değişiklikleri Commitle
    git commit -m 'Add some YeniOzellik'
  4. Push to the Branch | Değişikliğini Yolla
    git push origin feature/YeniOzellik
  5. Open a Pull Request | Pull Request Aç

License / Lisans

Distributed under the GNU License.
See LICENSE for more information.

GNU Lisansı altında dağıtılmaktadır.
Daha fazla bilgi için LICENSE bölümüne bakın.