-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearch_engine_1.py
58 lines (47 loc) · 2.27 KB
/
search_engine_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from search_engine_interface import search_engine_interface
from gensim.scripts.glove2word2vec import glove2word2vec
from gensim.models import KeyedVectors
from searcher import Searcher
from configuration import ConfigClass
import utils
class SearchEngine(search_engine_interface):
##############################################
########### GloVe ###########
##############################################
def __init__(self, config=None):
super(SearchEngine, self).__init__(config)
self.glove_input_file = 'glove.twitter.27B.25d.txt'
self.word2vec_output_file = 'glove.twitter.27B.25d.txt.word2vec'
self.local_cache = {}
def search(self, query):
query_as_list = self._parser.parse_sentence(query)
query_expansion = self.query_expansion(query_as_list)
self.add_similar_word_to_query(query_as_list, query_expansion)
searcher = Searcher(self._parser, self._indexer, model=self._model)
n_relevant, ranked_doc_ids = searcher.search(query_as_list,5)
return n_relevant, ranked_doc_ids
def add_similar_word_to_query(self, query_as_list, query_expansion):
query_as_list.extend([word[0] for word in query_expansion])
def query_expansion(self, query_as_list):
glove2word2vec(self.glove_input_file, self.word2vec_output_file)
model = KeyedVectors.load_word2vec_format(self.word2vec_output_file, binary=False)
result = []
for term in query_as_list:
if term in self.local_cache.keys():
result.extend(self.local_cache[term])
else:
try:
if term[0] == "@" or term[0] == "#":
continue
else:
result.extend(
[model.most_similar(term)[0], model.most_similar(term)[1], model.most_similar(term)[2]])
self.local_cache[term] = [model.most_similar(term)[0], model.most_similar(term)[1], model.most_similar(term)[2]]
except:
pass
return result
if __name__ == '__main__':
s = SearchEngine()
s.build_index_from_parquet("/Users/samuel/Desktop/Corpus/test")
#s.search("Coronavirus is less dangerous than the flu")
#'bioweapon'