-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbfs_iscyclic.cpp
129 lines (104 loc) · 2.65 KB
/
bfs_iscyclic.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
// A C++ program to check if there is a cycle in
// directed graph using BFS.
#include <bits/stdc++.h>
using namespace std;
// Class to represent a graph
class Graph {
int V; // No. of vertices'
// Pointer to an array containing adjacency list
list<int>* adj;
public:
Graph(int V); // Constructor
// function to add an edge to graph
void addEdge(int u, int v);
// Returns true if there is a cycle in the graph
// else false.
bool isCycle();
};
Graph::Graph(int V)
{
this->V = V;
adj = new list<int>[V];
}
void Graph::addEdge(int u, int v)
{
adj[u].push_back(v);
}
// This function returns true if there is a cycle
// in directed graph, else returns false.
bool Graph::isCycle()
{
// Create a vector to store indegrees of all
// vertices. Initialize all indegrees as 0.
vector<int> in_degree(V, 0);
// Traverse adjacency lists to fill indegrees of
// vertices. This step takes O(V+E) time
for (int u = 0; u < V; u++) {
for (auto v : adj[u])
in_degree[v]++;
}
// Create an queue and enqueue all vertices with
// indegree 0
queue<int> q;
for (int i = 0; i < V; i++)
if (in_degree[i] == 0)
q.push(i);
// Initialize count of visited vertices
int cnt = 0;
// Create a vector to store result (A topological
// ordering of the vertices)
vector<int> top_order;
// One by one dequeue vertices from queue and enqueue
// adjacents if indegree of adjacent becomes 0
while (!q.empty()) {
// Extract front of queue (or perform dequeue)
// and add it to topological order
int u = q.front();
q.pop();
top_order.push_back(u);
// Iterate through all its neighbouring nodes
// of dequeued node u and decrease their in-degree
// by 1
list<int>::iterator itr;
for (itr = adj[u].begin(); itr != adj[u].end(); itr++)
// If in-degree becomes zero, add it to queue
if (--in_degree[*itr] == 0)
q.push(*itr);
cnt++;
}
// Check if there was a cycle
if (cnt != V)
return true;
else
return false;
}
// Driver program to test above functions
int main()
{
// Create a graph given in the above diagram
// g.addEdge(0, 1);
// g.addEdge(1, 2);
// g.addEdge(2, 0);
// g.addEdge(3, 4);
// g.addEdge(4, 5);
int n,m;
scanf("%d %d", &n, &m);
int u[m] , v[m] ;
long int h[m], t[m] ;
int i;
for( i = 0; i < m; i +=1 ){
// printf("line%d : ",i);
scanf("%d%d%ld%ld",&u[i],&v[i], &t[i], &h[i]);
}
Graph g(n);
// making above unknown graph
for (int j=0; j<m;j++){
// printf("%ld", t[j]-h[j]);
g.addEdge(u[j]-1, v[j]-1);
}
if (g.isCycle())
cout << "Yes";
else
cout << "No";
return 0;
}