Skip to content

Latest commit

 

History

History
74 lines (52 loc) · 2.36 KB

INSTALL.md

File metadata and controls

74 lines (52 loc) · 2.36 KB

Installation

The code was tested on Ubuntu 16.04, with Anaconda Python 3.6, PyTorch v0.4.1, Numpy v1.17.2 and Pillow v6.2.0. NVIDIA GPUs are needed for both training and testing. After install Anaconda:

  1. [Optional but recommended] create a new conda environment.

    conda create --name CenterNet python=3.6
    

    And activate the environment.

    conda activate CenterNet
    
  2. Install pytorch0.4.1:

    conda install pytorch=0.4.1 torchvision -c pytorch
    

    And disable cudnn batch normalization(Due to this issue).

    # PYTORCH=/path/to/pytorch # usually ~/anaconda3/envs/CenterNet/lib/python3.6/site-packages/
    # for pytorch v0.4.0
    sed -i "1194s/torch\.backends\.cudnn\.enabled/False/g" ${PYTORCH}/torch/nn/functional.py
    # for pytorch v0.4.1
    sed -i "1254s/torch\.backends\.cudnn\.enabled/False/g" ${PYTORCH}/torch/nn/functional.py
    

    For other pytorch version, you can manually open torch/nn/functional.py and find the line with torch.batch_norm and replace the torch.backends.cudnn.enabled with False. We observed slight worse training results without doing so.

  3. Install COCOAPI:

    # COCOAPI=/path/to/clone/cocoapi
    git clone https://github.com/cocodataset/cocoapi.git $COCOAPI
    cd $COCOAPI/PythonAPI
    make
    python setup.py install --user
    
  4. Clone this repo:

    CenterNet_ROOT=/path/to/clone/CenterNet
    git clone https://github.com/xingyizhou/CenterNet $CenterNet_ROOT
    
  5. Install the requirements

    pip install -r requirements.txt
    
  6. Compile deformable convolutional (from DCNv2).

    cd $CenterNet_ROOT/src/lib/models/networks/DCNv2
    ./make.sh
    
  7. [Optional, only required if you are using extremenet or multi-scale testing] Compile NMS if your want to use multi-scale testing or test ExtremeNet.

    cd $CenterNet_ROOT/src/lib/external
    make
    
  8. Download pertained models for detection or pose estimation and move them to $CenterNet_ROOT/models/. More models can be found in Model zoo.