-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsudoko.py
38 lines (28 loc) · 1.12 KB
/
sudoko.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# *Copyrights are in name of :- SARTHAK BHATNAGAR/Python_is_pie #
# #
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D,MaxPooling2D,Activation,Flatten,Dense,Dropout
class SudokoNet:
@staticmethod
def build(width,height,depth,classes):
#initialize our models
model = Sequential()
inputshape = (height,width,depth)
model.add(Conv2D(32,(5,5),padding="same",input_shape=inputshape))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(32,(3,3),padding="same"))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation("relu"))
model.add(Dropout(0.5))
model.add(Dense(64))
model.add(Activation("relu"))
model.add(Dropout(0.5))
model.add(Dense(classes))
model.add(Activation("softmax"))
return model