Skip to content

Latest commit

 

History

History
438 lines (305 loc) · 11.3 KB

README.md

File metadata and controls

438 lines (305 loc) · 11.3 KB

Educhain Logo

PyPI version License: MIT Python Versions Downloads

Educhain 🎓🔗

Educhain Website Documentation

Welcome to Educhain! Transform your educational content effortlessly with cutting-edge AI tools. Explore our Website and dive into the Documentation to get started.

Educhain is a powerful Python package that leverages Generative AI to create engaging and personalized educational content. From generating multiple-choice questions to crafting comprehensive lesson plans, Educhain makes it easy to apply AI in various educational scenarios.

Educhain Logo

🚀 Features

📝 Generate Multiple Choice Questions (MCQs)
from educhain import Educhain

client = Educhain()

# Basic MCQ generation
mcq = client.qna_engine.generate_questions(
    topic="Solar System",
    num=3,
    question_type="Multiple Choice"
)

# Advanced MCQ with custom parameters
advanced_mcq = client.qna_engine.generate_questions(
    topic="Solar System",
    num=3,
    question_type="Multiple Choice",
    difficulty_level="Hard",
    custom_instructions="Include recent discoveries"
)

print(mcq.json())  # View in JSON format
📊 Create Lesson Plans
from educhain import Educhain

client = Educhain()

# Basic lesson plan
lesson = client.content_engine.generate_lesson_plan(
    topic="Photosynthesis"
)

# Advanced lesson plan with specific parameters
detailed_lesson = client.content_engine.generate_lesson_plan(
    topic="Photosynthesis",
    duration="60 minutes",
    grade_level="High School",
    learning_objectives=["Understanding the process", "Identifying key components"]
)

print(lesson.json())
🔄 Support for Various LLM Models
from educhain import Educhain, LLMConfig
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_openai import ChatOpenAI

# Using Gemini
gemini_model = ChatGoogleGenerativeAI(
    model="gemini-1.5-pro",
    google_api_key="YOUR_GOOGLE_API_KEY"
)
gemini_config = LLMConfig(custom_model=gemini_model)
gemini_client = Educhain(gemini_config)

# Using GPT-4
gpt4_model = ChatOpenAI(
    model_name="gpt-4",
    openai_api_key="YOUR_OPENAI_API_KEY"
)
gpt4_config = LLMConfig(custom_model=gpt4_model)
gpt4_client = Educhain(gpt4_config)
📁 Export Questions to Different Formats
from educhain import Educhain

client = Educhain()
questions = client.qna_engine.generate_questions(topic="Climate Change", num=5)

# Export to JSON
questions.json("climate_questions.json")

# Export to PDF
questions.to_pdf("climate_questions.pdf")

# Export to CSV
questions.to_csv("climate_questions.csv")
🎨 Customizable Prompt Templates
from educhain import Educhain

client = Educhain()

# Custom template for questions
custom_template = """
Generate {num} {question_type} questions about {topic}.
Ensure the questions are:
- At {difficulty_level} level
- Focus on {learning_objective}
- Include practical examples
- {custom_instructions}
"""

questions = client.qna_engine.generate_questions(
    topic="Machine Learning",
    num=3,
    question_type="Multiple Choice",
    difficulty_level="Intermediate",
    learning_objective="Understanding Neural Networks",
    custom_instructions="Include recent developments",
    prompt_template=custom_template
)
📚 Generate Questions from Files
from educhain import Educhain

client = Educhain()

# From URL
url_questions = client.qna_engine.generate_questions_from_data(
    source="https://example.com/article",
    source_type="url",
    num=3
)

# From PDF
pdf_questions = client.qna_engine.generate_questions_from_data(
    source="path/to/document.pdf",
    source_type="pdf",
    num=3
)

# From Text File
text_questions = client.qna_engine.generate_questions_from_data(
    source="path/to/content.txt",
    source_type="text",
    num=3
)
📹 Generate Questions from YouTube Videos New
from educhain import Educhain

client = Educhain()

# Basic usage - Generate 3 MCQs from a YouTube video
questions = client.qna_engine.generate_questions_from_youtube(
    url="https://www.youtube.com/watch?v=dQw4w9WgXcQ",
    num=3
)
print(questions.json())

# Generate questions preserving original language
preserved_questions = client.qna_engine.generate_questions_from_youtube(
    url="https://www.youtube.com/watch?v=dQw4w9WgXcQ",
    num=2,
    target_language='hi',
    preserve_original_language=True  # Keeps original language
)
🥽 Generate Questions from Images New
from educhain import Educhain

client = Educhain() #Default is 4o-mini (make sure to use a multimodal LLM!)

question = client.qna_engine.solve_doubt(
    image_source="path-to-your-image",
    prompt="Explain the diagram in detail",
    detail_level = "High" 
    )

print(question)

📈 Workflow

Reimagining Education with AI 🤖

  • 📜 QnA Engine: Generates an infinte variety of Questions
  • 📰 Content Engine: One-stop content generation - lesson plans, flashcards, notes etc
  • 📌 Personalization Engine: Adapts to your individual level of understanding for a tailored experience.

Educhain workflow diagram

🛠 Installation

pip install educhain

🎮 Usage

Starter Guide

Open In Colab

Quick Start

Get started with content generation in < 3 lines!

from educhain import Educhain

client = Educhain()

ques = client.qna_engine.generate_questions(topic="Newton's Law of Motion",
                                            num=5)
print(ques)
ques.json() # ques.dict()

Supports Different Question Types

Generates different types of questions. See the advanced guide to create a custom question type.

# Supports "Multiple Choice" (default); "True/False"; "Fill in the Blank"; "Short Answer"

from educhain import Educhain

client = Educhain()

ques = client.qna_engine.generate_questions(topic = "Psychology", 
                                            num = 10,
                                            question_type="Fill in the Blank"
                                            custom_instructions = "Only basic questions")

print(ques)
ques.json() #ques.dict()

Use Different LLM Models

To use a custom model, you can pass a model configuration through the LLMConfig class

Here's an example using the Gemini Model

from langchain_google_genai import ChatGoogleGenerativeAI
from educhain import Educhain, LLMConfig

gemini_flash = ChatGoogleGenerativeAI(
    model="gemini-1.5-flash-exp-0827",
    google_api_key="GOOGLE_API_KEY")

flash_config = LLMConfig(custom_model=gemini_flash)

client = Educhain(flash_config) #using gemini model with educhain

ques = client.qna_engine.generate_questions(topic="Psychology",
                                            num=10)

print(ques)
ques.json() #ques.dict()

Customizable Prompt Templates

Configure your prompt templates for more control over input parameters and output quality.

from educhain import Educhain

client = Educhain()

custom_template = """
Generate {num} multiple-choice question (MCQ) based on the given topic and level.
Provide the question, four answer options, and the correct answer.
Topic: {topic}
Learning Objective: {learning_objective}
Difficulty Level: {difficulty_level}
"""

ques = client.qna_engine.generate_questions(
    topic="Python Programming",
    num=2,
    learning_objective="Usage of Python classes",
    difficulty_level="Hard",
    prompt_template=custom_template,
)

print(ques)

Generate Questions from Data Sources

Ingest your own data to create content. Currently supports URL/PDF/TXT.

from educhain import Educhain
client = Educhain()

ques = client.qna_engine.generate_questions_from_data(
    source="https://en.wikipedia.org/wiki/Big_Mac_Index",
    source_type="url",
    num=5)

print(ques)
ques.json() # ques.dict()

Generate Lesson Plans

Create interactive and detailed lesson plans.

from educhain import Educhain

client = Educhain()

plan = client.content_engine.generate_lesson_plan(
                              topic = "Newton's Law of Motion")

print(plan)
plan.json()  # plan.dict()

📊 Supported Question Types

  • Multiple Choice Questions (MCQ)
  • Short Answer Questions
  • True/False Questions
  • Fill in the Blank Questions

🔧 Advanced Configuration

Educhain offers advanced configuration options to fine-tune its behavior. Check our advanced guide for more details. (coming soon!)

🌟 Success Stories

Educators worldwide are using Educhain to transform their teaching. Read our case studies to learn more.

📈 Usage Statistics

Educhain's adoption has been growing rapidly:

Usage Growth Graph

🗺 Roadmap

  • Bulk Generation
  • Outputs in JSON format
  • Custom Prompt Templates
  • Custom Response Models using Pydantic
  • Exports questions to JSON/PDF/CSV
  • Support for other LLM models
  • Generate questions from text/PDF file
  • Integration with popular Learning Management Systems
  • Mobile app for on-the-go content generation

🤝 Contributing

We welcome contributions! Please see our Contribution Guide for more details.

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

📬 Contact

For bug reports or feature requests, please open an issue on our GitHub repository.


Educhain Logo

Made with ❤️ by Buildfastwithai

www.educhain.in