forked from zipkinlab/Saunders_etal_2019_Ecol
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Data_manip_AMWO_marray_Git.R
334 lines (276 loc) · 14.1 KB
/
Data_manip_AMWO_marray_Git.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
#------------------------------------------------------------------------------
# Data manipulation of banding data to create m-arrays for band recovery models
#------------------------------------------------------------------------------
# Read in dataset
raw<-read.csv("AMWO recoveries.csv")
tail(raw) #6897 records
########################################################################
#cleaning data
########################################################################
#only use status 3 birds
raw<-subset(raw,Status==3) #6,879 records (18 excluded)
#only use how obtained category 1 (shot)
raw<-subset(raw,How.Obt==1) #5,911 records (968 excluded)
#only use B.Year from 1963 onwards
raw<-subset(raw,B.Year>=1963) #5,516 records (395 excluded)
#subset B.Month between 4 and 9 to cover our 2 seasons
raw<-subset(raw,B.Month>=4&B.Month<=9) #4,377 records (1139 excluded)
## TA modified, take out recoveries of birds shot in March through August (non-hunting season)
raw<-subset(raw,R.Month!=3)
raw<-subset(raw,R.Month!=4)
raw<-subset(raw,R.Month!=5)
raw<-subset(raw,R.Month!=6)
raw<-subset(raw,R.Month!=7)
raw<-subset(raw,R.Month!=8) #4,367 records (10 excluded)
## TA added
# remove birds with ambiguous harvest season
raw<-subset(raw,R.Month!=99)
summary(raw$Species.Game.Birds..SPEC) #4,364 records (3 excluded)
## TA added
# remove birds with ambiguous hunting seasons survived (uncertainty about encounter date when reported)
raw<-subset(raw,Hunt..Season.Surv.!=99) #4,346 records (18 excluded)
## TA added
# remove radio transmitters (meta-analyses suggest survival and harvest effects)
raw<-subset(raw,Add.Info!=89)
raw<-subset(raw,Add.Info!=81) #4,281 records (65 excluded)
# inspect remaining categories
summary(raw)
#bring in B.month, convert to season
clean<-matrix(NA,nrow=length(raw$B.Month),ncol=1)
clean<-data.frame(clean)
clean[raw$B.Month>=4&raw$B.Month<=6,]<-1
clean[raw$B.Month>=7&raw$B.Month<=9,]<-2 # 2,225 spring (Apr-Jun), 2,056 summer (Jul-Sep)
#Bring in B.year
clean[,2]<-raw$B.Year
#bring in recovery year and account for recoveries occurring in Jan-Feb
clean[,3]<-NA
clean[raw$R.Month>=4,3]<-raw[raw$R.Month>=4,"R.Year"]
clean[raw$R.Month<4,3]<-raw[raw$R.Month<4,"R.Year"]-1
#head(clean) ## TA properly accounts for Jan-Feb recoveries
#bring in B region
clean[,4]<-0
clean[raw$B.Flyway==1,4]<-1 ## Eastern region, U.S
clean[raw$B.Flyway%in%2:3,4]<-2 ## Central region, U.S
clean[raw$B.Flyway==6&raw$BRegion..STA%in%c("QC","NS","NB","PE","NF","PQ"),4]<-1 ## Add eastern Canada (165)
clean[raw$B.Flyway==6&raw$BRegion..STA%in%c("ONT","MB"),4]<-2 ## 19 from ONT, added Manitoba to code (no recoveries, but some bandings)
# 1,663 eastern recoveries, 2,618 central recoveries
#bring in R region, this is only to exlude region crossers
clean[,5]<-0 #specify different number from previous step to flag it in the next step
clean[raw$R.Flyway==1,5]<-1
clean[raw$R.Flyway%in%2:3,5]<-2
#incorporating the Canadian provinces (Flyway=6) to their corresponding US regions
clean[raw$R.Flyway==6&raw$RRegion..STA%in%c("QC","NS","NB","PE","NF","PQ"),5]<-1
clean[raw$R.Flyway==6&raw$RRegion..STA%in%c("ONT", "MB"),5]<-2
# removes lines of region crossers
raw<-raw[clean$V4==clean$V5,]
clean<-clean[clean$V4==clean$V5,]
clean<-clean[,1:4] #remove R.state becuase it is redundant
# 1,663 to 1595 eastern recoveries, 2,618 to 2604 central recoveries
#bring in age
# local = 1, hatch year = 2, adult = 3
clean[,5]<-NA
clean[raw$Age..VAGE=="After Hatch Year",5]<-3
clean[raw$Age..VAGE=="After Second Year",5]<-3
clean[raw$Age..VAGE=="After Third Year",5]<-3
clean[raw$Age..VAGE=="Second Year",5]<-3
clean[raw$Age..VAGE=="Unknown",5]<-NA ##delete 39 unknown age at banding
clean[raw$Age..VAGE=="Hatch Year",5]<-2
clean[raw$Age..VAGE=="Local",5]<-1
#remove unknowns
raw<-raw[!is.na(clean[,5]),]
clean<-clean[!is.na(clean[,5]),] ## 1530 locals, 1504 HY, 1126 adults
# get rid of hatch years in months 4, 5 and 6
clean <- clean[!(raw$Age..VAGE=="Hatch Year"&raw$B.Month%in%c(4:6)),]
raw <- raw[!(raw$Age..VAGE=="Hatch Year"&raw$B.Month%in%c(4:6)),]
## there are also 2 locals banded in month 7
clean <- clean[!(raw$Age..VAGE=="Local"&raw$B.Month%in%c(7:9)),]
raw <- raw[!(raw$Age..VAGE=="Local"&raw$B.Month%in%c(7:9)),] ## 1528 locals, 1350 HY, 1126 adults
#bring in sex and convert to age class so this is more like a sex-age class column
# 1=local, 2=juv, 3=male, 4=female
clean[,6]<-NA
clean[clean[,5]%in%1:2,6]<-clean[clean[,5]%in%1:2,5]
#convert 2 juvenile ages to a single class
#now: 1=juv (both local and HY), 2=male, 3=female
clean[clean[,6]%in%1:2,6]<-1
### Sex from subsequent encounter means unknown at time of banding (== unknown if not recovered)
### So treat these as unknown and if marked as unknown-sex adult they get deleted (but probably all marked as local or HY)
clean[raw$Sex..VSEX%in%c("Male")&clean[,5]==3,6]<-2
clean[raw$Sex..VSEX%in%c("Female")&clean[,5]==3,6]<-3
# 465 males, 640 females, 2899 unknown
#remove unknown adults
raw<-raw[!(is.na(clean[,6])&clean[,5]==3),]
clean<-clean[!(is.na(clean[,6])&clean[,5]==3),]
# 465 males, 640 females, 2878 unknown
#adding dummy column to use sum function below for marray
clean[,7]<-1
colnames(clean)<-c("bSeason","bYear","rYear","region","age","class","dummy")
########################################################################
#create the marray
########################################################################
Year<-unique(clean$bYear)
Year<-sort(Year)
NYear<-length(Year)
Season<-unique(clean$bSeason)
NSeason<-length(Season)
Class<-unique(clean$class)
Class<-sort(Class)
NClass<-length(Class)
Region<-unique(clean$region)
Region<-sort(Region)
NRegion<-length(Region)
awc<-array(NA,dim=c(NYear,NYear,NSeason,NClass,NRegion),
dimnames =list(Year, Year, c("spring","not_spring"),
c("Juvenile","Adult_Male","Adult_Female"),
c("Eastern","Central")))
for (s in 1:NSeason){
for (cc in 1:NClass){
for (i in 1:NRegion){
for (b in 1:NYear){
for (r in 1:NYear){
awc[b,r,s,cc,i]<-sum(clean[clean$bYear==Year[b]&clean$rYear==Year[r]&clean$bSeason==Season[s]&clean$class==Class[cc]&clean$region==Region[i],7])
}}}}}
#juvenile m-arrays
awc[1:10,1:10,1,1,1] # spring, juv (locals only), eastern
awc[1:10,1:10,1,1,2] # spring, juv (locals only), central
awc[1:10,1:10,2,1,1] # summer, juv (HY only), eastern
awc[1:10,1:10,2,1,2] # summer, juv (HY only), central
# adult m-arrays
awc[1:10,1:10,1,2,1] # spring, adult males, eastern
awc[1:10,1:10,1,2,2] # spring, adult males, central
awc[1:10,1:10,2,2,1] # summer, adult males, eastern
awc[1:10,1:10,2,2,2] # summer, adult males, central
awc[1:10,1:10,1,3,1] # spring, adult females, eastern
awc[1:10,1:10,1,3,2] # spring, adult females, central
awc[1:10,1:10,2,3,1] # summer, adult females, eastern
awc[1:10,1:10,2,3,2] # summer, adult females, central
str(awc)
dim(awc) #53 banding yrs, 53 recovery yrs, 2 banding seasons, 3 sex-age classes, 2 regions
head(awc)
#save(awc, file="AMWO_Marray.rda")
#---------------------------------------------------------------------------
#need to add last column of unrecovered individuals to marray
#---------------------------------------------------------------------------
#bring in bandings file
bands<-read.csv("AMWO bandings.csv") #43,914 records
#need to summarize bandings according to: banding year, region, class, season
#only use status 3 birds
bands<-subset(bands,Status==3) #43,351 records (563 excluded)
#only use B.Year from 1963 onwards
bands<-subset(bands,B.Year>=1963) #40,734 (2617 excluded)
#subset B.Month between 4 and 9 to cover our 2 seasons
bands<-subset(bands,B.Month>=4&B.Month<=9) #34,251 records (6483 excluded)
# remove radio transmitters (meta-analyses suggest survival and harvest effects)
bands<-subset(bands,Add.Info!=89)
bands<-subset(bands,Add.Info!=80)
bands<-subset(bands,Add.Info!=81) #32,824 records (1427 excluded)
#bring in B.month, convert to season
clean.bands<-matrix(NA,nrow=length(bands$B.Month),ncol=1)
clean.bands<-data.frame(clean.bands)
clean.bands[bands$B.Month>=4&bands$B.Month<=6,]<-1
clean.bands[bands$B.Month>=7&bands$B.Month<=9,]<-2 # 19,589 spring (Apr-Jun), 13,238 summer (Jul-Sep)
#Bring in B.year
clean.bands[,2]<-bands$B.Year
#bring in B region
clean.bands[,3]<-0
clean.bands[bands$B.Flyway==1,3]<-1 ## Eastern region, U.S
clean.bands[bands$B.Flyway%in%2:3,3]<-2 ## Central region, U.S
clean.bands[bands$B.Flyway==6&bands$Region..State %in%c("Quebec","Nova Scotia","New Brunswick","Newfoundland and Labrador and St. Pierre et Miquelon"),3]<-1 ## Add eastern Canada (165)
clean.bands[bands$B.Flyway==6&bands$Region..State %in%c("Ontario","Manitoba"),3]<-2 ## 19 from ONT, added Manitoba to code (no recoveries, but some bandings)
# 13054 in Eastern, 19770 in Central = 32,824
#bring in age
# local = 1, hatch year = 2, adult = 3
clean.bands[,4]<-NA
clean.bands[bands$Age..VAGE=="After Hatch Year",4]<-3
clean.bands[bands$Age..VAGE=="After Second Year",4]<-3
clean.bands[bands$Age..VAGE=="After Third Year",4]<-3
clean.bands[bands$Age..VAGE=="Second Year",4]<-3
clean.bands[bands$Age..VAGE=="Unknown",4]<-NA ##delete unknown age at banding
clean.bands[bands$Age..VAGE=="Hatch Year",4]<-2
clean.bands[bands$Age..VAGE=="Local",4]<-1
#remove unknowns
bands<-bands[!is.na(clean.bands[,4]),]
clean.bands<-clean.bands[!is.na(clean.bands[,4]),]
#32,139 individuals
# get rid of hatch years in months 4, 5 and 6
clean.bands <- clean.bands[!(bands$Age..VAGE=="Hatch Year"&bands$B.Month%in%c(4:6)),]
bands <- bands[!(bands$Age..VAGE=="Hatch Year"&bands$B.Month%in%c(4:6)),]
## there are also 2 locals banded in month 7
clean.bands <- clean.bands[!(bands$Age..VAGE=="Local"&bands$B.Month%in%c(7:9)),]
bands <- bands[!(bands$Age..VAGE=="Local"&bands$B.Month%in%c(7:9)),]
#Now 30,846 inds
#bring in sex and convert to age class so this is more like a sex-age class column
# 1=local, 2=juv, 3=male, 4=female
clean.bands[,5]<-NA
clean.bands[clean.bands[,4]%in%1:2,5]<-clean.bands[clean.bands[,4]%in%1:2,4]
#convert 2 juvenile ages to a single class
#now: 1=juv (both local and HY), 2=male, 3=female
clean.bands[clean.bands[,5]%in%1:2,5]<-1
### Sex from subsequent encounter means unknown at time of banding (== unknown if not recovered)
### So treat these as unknown and if marked as unknown-sex adult they get deleted (but probably all marked as local or HY)
clean.bands[bands$Sex..VSEX%in%c("Male")&clean.bands[,4]==3,5]<-2
clean.bands[bands$Sex..VSEX%in%c("Female")&clean.bands[,4]==3,5]<-3
#remove unknown adults for now--only losing 21 individuals if we don't include them
bands<-bands[!(is.na(clean.bands[,5])&clean.bands[,4]==3),]
clean.bands<-clean.bands[!(is.na(clean.bands[,5])&clean.bands[,4]==3),]
# 30176 inds : 6533 females, 6127 males, 17516 juvs
#adding column to use sum function below for marray. Each line of data can include multiple bandings, so need to account
#for that with Count.of.Birds column from data instead of a dummy column of 1's.
clean.bands[,6]<-bands$Count.of.Birds
colnames(clean.bands)<-c("bSeason","bYear","region","age","class","dummy")
#Sorting for the addition to the m-array
Year.bands<-unique(clean.bands$bYear)
Year.bands<-sort(Year.bands) #SS sorted
NYear.bands<-length(Year.bands)
Season.bands<-unique(clean.bands$bSeason)
NSeason.bands<-length(Season.bands)
Class.bands<-unique(clean.bands$class)
Class.bands<-sort(Class.bands) #SS sorted
NClass.bands<-length(Class.bands)
Region.bands<-unique(clean.bands$region)
Region.bands<-sort(Region.bands) #SS sorted
NRegion.bands<-length(Region.bands)
## Create m-array for total number of bandings each year
awc.bands<-array(NA,dim=c(NYear,1,NSeason,NClass,NRegion),
dimnames =list(Year, "Banded", c("spring","not_spring"),
c("Juvenile","Adult_Male","Adult_Female"),
c("Eastern","Central")))
for (s in 1:NSeason.bands){
for (cc in 1:NClass.bands){
for (i in 1:NRegion.bands){
for (b in 1:NYear.bands){
awc.bands[b,,s,cc,i]<-sum(clean.bands[clean.bands$bYear==Year.bands[b]&clean.bands$bSeason==Season.bands[s]&clean.bands$class==Class.bands[cc]&clean.bands$region==Region.bands[i],6])
}}}}
## Create m-array for total number Not Recovered each year
awc.nonrecov<-array(NA,dim=c(NYear,1,NSeason,NClass,NRegion),
dimnames =list(Year, "Not Recovered", c("spring","not_spring"),
c("Juvenile","Adult_Male","Adult_Female"),
c("Eastern","Central")))
for (s in 1:NSeason.bands){
for (cc in 1:NClass.bands){
for (i in 1:NRegion.bands){
for (b in 1:NYear.bands){
awc.nonrecov[b,,s,cc,i]<- awc.bands[b,,s,cc,i] - sum(awc[b,,s,cc,i])
}}}}
## Combine awc.nonrecov as final column with awc
marrayAMWO<-array(NA,dim=c(NYear,NYear+1,NSeason,NClass,NRegion),
dimnames =list(Year, c(Year,"NR"), c("spring","not_spring"),
c("Juvenile","Adult_Male","Adult_Female"),
c("Eastern","Central")))
relAMWO<-array(NA,dim=c(NYear,NSeason,NClass,NRegion),
dimnames =list(Year, c("spring","not_spring"),
c("Juvenile","Adult_Male","Adult_Female"),
c("Eastern","Central")))
for (s in 1:NSeason){
for (cc in 1:NClass){
for (i in 1:NRegion){
for (b in 1:NYear){
for (r in 1:(NYear+1)){
if(r <= NYear){
marrayAMWO[b,r,s,cc,i] <- awc[b,r,s,cc,i]
}else{
marrayAMWO[b,r,s,cc,i] <- awc.nonrecov[b,,s,cc,i]
}
relAMWO[b,s,cc,i] <- sum(marrayAMWO[b,,s,cc,i])
}}}}}
save(marrayAMWO, file="marrayAMWO.rda")
save(relAMWO, file="relAMWO.rda")