-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKLM-v3.nb
1428 lines (1343 loc) · 59.5 KB
/
KLM-v3.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 59380, 1420]
NotebookOptionsPosition[ 54802, 1331]
NotebookOutlinePosition[ 55203, 1347]
CellTagsIndexPosition[ 55160, 1344]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["C-Phase with KLM", "Section",
CellChangeTimes->{{3.816610790284083*^9,
3.816610798207075*^9}},ExpressionUUID->"510dddc2-41d7-46c3-9afb-\
26cee6c401e4"],
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"B", "[",
RowBox[{"\[Theta]_", ",", "\[Phi]_"}], "]"}], ":=",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Cos", "[", "\[Theta]", "]"}], ",",
RowBox[{
RowBox[{"-",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"+", "\[ImaginaryI]"}], " ", "\[Phi]"}]]}],
RowBox[{"Sin", "[", "\[Theta]", "]"}]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"+",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]"}]]}],
RowBox[{"Sin", "[", "\[Theta]", "]"}]}], ",",
RowBox[{"Cos", "[", "\[Theta]", "]"}]}], "}"}]}], "}"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Theta]1", "=",
RowBox[{"\[Pi]", "/", "8"}]}], ";", " ",
RowBox[{"\[Phi]1", "=", "0"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Theta]2", "=",
RowBox[{
FractionBox["65.5302", "180"], "\[Pi]"}]}], ";", " ",
RowBox[{"\[Phi]2", "=", "0"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Theta]3", "=",
RowBox[{
RowBox[{"-", "\[Pi]"}], "/", "8"}]}], ";", " ",
RowBox[{"\[Phi]3", "=", "0"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Phi]4", "=", "\[Pi]"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"(*",
RowBox[{
RowBox[{"\[Eta]", "=", "1"}], ";"}], "*)"}]}]}], "Input",
CellChangeTimes->{{3.794911146160224*^9, 3.794911248523314*^9},
3.7952746696970477`*^9, {3.7955447931152134`*^9, 3.7955448030175557`*^9}, {
3.816614564968485*^9, 3.8166145675844917`*^9}, {3.8166158972053823`*^9,
3.8166159013457294`*^9}, {3.816618078229805*^9, 3.8166181034250965`*^9}, {
3.8166182664810934`*^9, 3.8166182793259945`*^9}, 3.816624297722885*^9, {
3.8166243305506735`*^9, 3.8166243325193872`*^9}, 3.816625460147797*^9},
CellLabel->"In[1]:=",ExpressionUUID->"da84993f-7af9-4f8f-92b1-4780754724c8"],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.816610998161322*^9, 3.8166109992066393`*^9}},
CellLabel->"In[6]:=",ExpressionUUID->"85cbb074-d962-4d4d-932e-c4cdfacfeb84"],
Cell[CellGroupData[{
Cell["after 50-50 Beam splitter on the left", "Subsection",
CellChangeTimes->{{3.7949114603348665`*^9, 3.794911478956874*^9},
3.7949146476274304`*^9, {3.795274559146796*^9, 3.7952745756496477`*^9}, {
3.8166110153474784`*^9, 3.8166110175755568`*^9}, {3.816614310771247*^9,
3.816614317032834*^9}},ExpressionUUID->"13eb69d3-570b-4d83-a6f9-\
86a08e217207"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"t10", ",", "b10"}], "}"}], "=",
RowBox[{
RowBox[{"B", "[",
RowBox[{
RowBox[{"\[Pi]", "/", "4"}], ",", "0"}], "]"}], ".",
RowBox[{"{",
RowBox[{"t11", ",", "b11"}], "}"}]}]}], ";"}]], "Input",
CellChangeTimes->{{3.8166143310669217`*^9, 3.8166144001431675`*^9}},
CellLabel->"In[7]:=",ExpressionUUID->"3a3976e0-b97c-4e41-9273-2db1c58d6051"]
}, Closed]],
Cell[CellGroupData[{
Cell["top", "Subsection",
CellChangeTimes->{{3.8166144092245455`*^9,
3.8166144110926366`*^9}},ExpressionUUID->"d43d25e0-4895-478f-9d46-\
e6410e20be15"],
Cell[CellGroupData[{
Cell["after Beam splitter 1 ( coupling modes 2 and 3)", "Subsubsection",
CellChangeTimes->{{3.7949114603348665`*^9, 3.794911478956874*^9},
3.7949146476274304`*^9, {3.795274559146796*^9,
3.7952745756496477`*^9}},ExpressionUUID->"5bbdd900-6d2b-443d-9188-\
312807b312e1"],
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"t21", ",", "t31"}], "}"}], "=",
RowBox[{
RowBox[{"B", "[",
RowBox[{"\[Theta]1", ",", "\[Phi]1"}], "]"}], ".",
RowBox[{"{",
RowBox[{"t22", ",", "t32"}], "}"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"t11", "=",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], "t12"}]}],
";"}]}], "Input",
CellChangeTimes->{{3.794911500812257*^9, 3.7949115276922073`*^9}, {
3.7949116064040847`*^9, 3.794911608515309*^9}, 3.794911651941688*^9, {
3.7949116951343937`*^9, 3.794911800838838*^9}, {3.794911833940407*^9,
3.794911899749794*^9}, {3.794912018065424*^9, 3.7949120282768035`*^9}, {
3.79491465979984*^9, 3.794914662404438*^9}, {3.816610751789215*^9,
3.81661075532837*^9}, 3.8166143038482885`*^9, {3.816614436528927*^9,
3.816614447274308*^9}, {3.8166161007377553`*^9, 3.8166161227562294`*^9}, {
3.8166248965314927`*^9, 3.8166248975863028`*^9}},
CellLabel->"In[8]:=",ExpressionUUID->"d565ee10-4ca1-4e6d-8e04-6bffb3c647af"]
}, Open ]],
Cell[CellGroupData[{
Cell["after Beam splitter 2 (coupling modes 1 and 2)", "Subsubsection",
CellChangeTimes->{{3.7949115648045216`*^9, 3.7949115823578873`*^9}, {
3.7949146443249884`*^9, 3.794914653852062*^9}, {3.795274578897782*^9,
3.7952745874339943`*^9}},ExpressionUUID->"93702967-14a7-47eb-9b54-\
4c8bab810606"],
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"t12", ",", "t22"}], "}"}], "=",
RowBox[{
RowBox[{"B", "[",
RowBox[{"\[Theta]2", ",", "\[Phi]2"}], "]"}], ".",
RowBox[{"{",
RowBox[{"t13", ",", "t23"}], "}"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"t32", "=", "t33"}], ";"}]}], "Input",
CellChangeTimes->{{3.794911602772791*^9, 3.794911603044525*^9}, {
3.7949118793647175`*^9, 3.7949119496288676`*^9}, {3.7949120316534705`*^9,
3.794912044204322*^9}, {3.7949121247103033`*^9, 3.794912125980576*^9}, {
3.794914665484336*^9, 3.7949146674437227`*^9}, {3.8166144495664444`*^9,
3.8166144684748464`*^9}},
CellLabel->"In[10]:=",ExpressionUUID->"a91ba7df-3a0c-4648-a6e8-2350fadc2ac8"]
}, Open ]],
Cell[CellGroupData[{
Cell["after Beam splitter 3 (coupling modes 2 and 3)", "Subsubsection",
CellChangeTimes->{{3.7949115648045216`*^9, 3.7949115823578873`*^9}, {
3.794912142454915*^9, 3.7949121460843687`*^9}, 3.795268429874756*^9, {
3.795274591257735*^9,
3.795274604818512*^9}},ExpressionUUID->"c3b352a3-92ce-421e-b2d2-\
211df68f0f87"],
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"t23", ",", "t33"}], "}"}], "=",
RowBox[{
RowBox[{"B", "[",
RowBox[{"\[Theta]3", ",", "\[Phi]3"}], "]"}], ".",
RowBox[{"{",
RowBox[{"t24", ",", "t34"}], "}"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"t13", "=", "t14"}], ";"}]}], "Input",
CellChangeTimes->{{3.794911602772791*^9, 3.794911603044525*^9}, {
3.7949118793647175`*^9, 3.7949119496288676`*^9}, {3.7949120316534705`*^9,
3.794912044204322*^9}, {3.7949121247103033`*^9, 3.79491218088734*^9}, {
3.8166144710600185`*^9, 3.8166144841741076`*^9}},
CellLabel->"In[12]:=",ExpressionUUID->"214e964e-3858-4784-b089-59424e605a31"]
}, Open ]],
Cell[CellGroupData[{
Cell["Inefficient detectors", "Subsubsection",
CellChangeTimes->{{3.816521322350785*^9, 3.816521340297995*^9}, {
3.816521379462307*^9,
3.8165213799030347`*^9}},ExpressionUUID->"b6384781-0e3c-435c-8e68-\
4aeb9888b0fc"],
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"t24", ",", "t2vac"}], "}"}], "=",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
SqrtBox["\[Eta]"], ",",
RowBox[{"\[ImaginaryI]",
SqrtBox[
RowBox[{"1", "-", "\[Eta]"}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"+", "\[ImaginaryI]"}],
SqrtBox[
RowBox[{"1", "-", "\[Eta]"}]]}], ",", "\[Eta]"}], "}"}]}], "}"}],
".",
RowBox[{"{",
RowBox[{"t25", ",", "t2dump"}], "}"}]}]}], ";"}], "\n",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"t34", ",", "t3vac"}], "}"}], "=",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
SqrtBox["\[Eta]"], ",",
RowBox[{"\[ImaginaryI]",
SqrtBox[
RowBox[{"1", "-", "\[Eta]"}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"+", "\[ImaginaryI]"}],
SqrtBox[
RowBox[{"1", "-", "\[Eta]"}]]}], ",", "\[Eta]"}], "}"}]}], "}"}],
".",
RowBox[{"{",
RowBox[{"t35", ",", "t3dump"}], "}"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"t14", "=", "t15"}], ";"}]}], "Input",
CellChangeTimes->{{3.8165213863697677`*^9, 3.8165215781613455`*^9}, {
3.8166144871896744`*^9, 3.8166145020532475`*^9}, {3.817047751722315*^9,
3.8170477606851625`*^9}},
CellLabel->"In[14]:=",ExpressionUUID->"bdf9f3dd-262e-41bf-b686-4d8f674dc751"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["bottom", "Subsection",
CellChangeTimes->{{3.8166144092245455`*^9, 3.8166144110926366`*^9}, {
3.8166145956475134`*^9,
3.816614596461729*^9}},ExpressionUUID->"748ed87d-2311-4b91-8ad8-\
306ad8a0e188"],
Cell[CellGroupData[{
Cell["after Beam splitter 1 ( coupling modes 2 and 3)", "Subsubsection",
CellChangeTimes->{{3.7949114603348665`*^9, 3.794911478956874*^9},
3.7949146476274304`*^9, {3.795274559146796*^9,
3.7952745756496477`*^9}},ExpressionUUID->"575ee64f-8edc-4065-88b2-\
2cbdb9da4f1c"],
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"b21", ",", "b31"}], "}"}], "=",
RowBox[{
RowBox[{"B", "[",
RowBox[{"\[Theta]1", ",", "\[Phi]1"}], "]"}], ".",
RowBox[{"{",
RowBox[{"b22", ",", "b32"}], "}"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"b11", "=",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "\[ImaginaryI]"}], " ", "\[Phi]4"}]], "b12"}]}],
";"}]}], "Input",
CellChangeTimes->{{3.794911500812257*^9, 3.7949115276922073`*^9}, {
3.7949116064040847`*^9, 3.794911608515309*^9}, 3.794911651941688*^9, {
3.7949116951343937`*^9, 3.794911800838838*^9}, {3.794911833940407*^9,
3.794911899749794*^9}, {3.794912018065424*^9, 3.7949120282768035`*^9}, {
3.79491465979984*^9, 3.794914662404438*^9}, {3.816610751789215*^9,
3.81661075532837*^9}, 3.8166143038482885`*^9, {3.816614436528927*^9,
3.816614447274308*^9}, {3.816614600731161*^9, 3.816614609040909*^9}, {
3.816616155305833*^9, 3.816616161956232*^9}},
CellLabel->"In[17]:=",ExpressionUUID->"70b81746-a4aa-4ec7-b796-66f9759cab3a"]
}, Open ]],
Cell[CellGroupData[{
Cell["after Beam splitter 2 (coupling modes 1 and 2)", "Subsubsection",
CellChangeTimes->{{3.7949115648045216`*^9, 3.7949115823578873`*^9}, {
3.7949146443249884`*^9, 3.794914653852062*^9}, {3.795274578897782*^9,
3.7952745874339943`*^9}},ExpressionUUID->"1e0a801c-fd74-4640-b71a-\
808585346e32"],
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"b12", ",", "b22"}], "}"}], "=",
RowBox[{
RowBox[{"B", "[",
RowBox[{"\[Theta]2", ",", "\[Phi]2"}], "]"}], ".",
RowBox[{"{",
RowBox[{"b13", ",", "b23"}], "}"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"b32", "=", "b33"}], ";"}]}], "Input",
CellChangeTimes->{{3.794911602772791*^9, 3.794911603044525*^9}, {
3.7949118793647175`*^9, 3.7949119496288676`*^9}, {3.7949120316534705`*^9,
3.794912044204322*^9}, {3.7949121247103033`*^9, 3.794912125980576*^9}, {
3.794914665484336*^9, 3.7949146674437227`*^9}, {3.8166144495664444`*^9,
3.8166144684748464`*^9}, {3.816614615821571*^9, 3.816614631304408*^9}},
CellLabel->"In[19]:=",ExpressionUUID->"3d779b7d-e848-420e-af79-a5fa5f1a7884"]
}, Open ]],
Cell[CellGroupData[{
Cell["after Beam splitter 3 (coupling modes 2 and 3)", "Subsubsection",
CellChangeTimes->{{3.7949115648045216`*^9, 3.7949115823578873`*^9}, {
3.794912142454915*^9, 3.7949121460843687`*^9}, 3.795268429874756*^9, {
3.795274591257735*^9,
3.795274604818512*^9}},ExpressionUUID->"c217b486-a7a3-4001-b4ac-\
2ce5dad327ee"],
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"b23", ",", "b33"}], "}"}], "=",
RowBox[{
RowBox[{"B", "[",
RowBox[{"\[Theta]3", ",", "\[Phi]3"}], "]"}], ".",
RowBox[{"{",
RowBox[{"b24", ",", "b34"}], "}"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"b13", "=", "b14"}], ";"}]}], "Input",
CellChangeTimes->{{3.794911602772791*^9, 3.794911603044525*^9}, {
3.7949118793647175`*^9, 3.7949119496288676`*^9}, {3.7949120316534705`*^9,
3.794912044204322*^9}, {3.7949121247103033`*^9, 3.79491218088734*^9}, {
3.8166144710600185`*^9, 3.8166144841741076`*^9}, {3.8166146337722855`*^9,
3.8166146461658287`*^9}},
CellLabel->"In[21]:=",ExpressionUUID->"eaf8f586-fd0b-4a26-b8f3-0145bff5829a"]
}, Open ]],
Cell[CellGroupData[{
Cell["Inefficient detectors", "Subsubsection",
CellChangeTimes->{{3.816521322350785*^9, 3.816521340297995*^9}, {
3.816521379462307*^9,
3.8165213799030347`*^9}},ExpressionUUID->"8760e2f8-ea14-447f-8a10-\
abc1515a5f1b"],
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"b24", ",", "b2vac"}], "}"}], "=",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
SqrtBox["\[Eta]"], ",",
RowBox[{"\[ImaginaryI]",
SqrtBox[
RowBox[{"1", "-", "\[Eta]"}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[ImaginaryI]",
SqrtBox[
RowBox[{"1", "-", "\[Eta]"}]]}], ",", "\[Eta]"}], "}"}]}], "}"}],
".",
RowBox[{"{",
RowBox[{"b25", ",", "b2dump"}], "}"}]}]}], ";"}], "\n",
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"b34", ",", "b3vac"}], "}"}], "=",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
SqrtBox["\[Eta]"], ",",
RowBox[{"\[ImaginaryI]",
SqrtBox[
RowBox[{"1", "-", "\[Eta]"}]]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"\[ImaginaryI]",
SqrtBox[
RowBox[{"1", "-", "\[Eta]"}]]}], ",", "\[Eta]"}], "}"}]}], "}"}],
".",
RowBox[{"{",
RowBox[{"b35", ",", "b3dump"}], "}"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"b14", "=", "b15"}], ";"}]}], "Input",
CellChangeTimes->{{3.8165213863697677`*^9, 3.8165215781613455`*^9}, {
3.8166144871896744`*^9, 3.8166145020532475`*^9}, {3.816614648532455*^9,
3.8166146647698917`*^9}, {3.817047734097496*^9, 3.817047744813826*^9}},
CellLabel->"In[23]:=",ExpressionUUID->"c77a7161-39d2-425d-8ce9-8cf39b1279ea"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["after 50-50 Beam splitter on the right", "Subsection",
CellChangeTimes->{{3.7949114603348665`*^9, 3.794911478956874*^9},
3.7949146476274304`*^9, {3.795274559146796*^9, 3.7952745756496477`*^9}, {
3.8166110153474784`*^9, 3.8166110175755568`*^9}, {3.816614310771247*^9,
3.816614317032834*^9}, {3.816615828462516*^9,
3.8166158291789227`*^9}},ExpressionUUID->"6d2b5bc7-51aa-4195-88d5-\
c376f15f119b"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"{",
RowBox[{"t15", ",", "b15"}], "}"}], "=",
RowBox[{
RowBox[{"B", "[",
RowBox[{
RowBox[{
RowBox[{"-", "\[Pi]"}], "/", "4"}], ",", "0"}], "]"}], ".",
RowBox[{"{",
RowBox[{"t16", ",", "b16"}], "}"}]}]}], ";"}]], "Input",
CellChangeTimes->{{3.8166143310669217`*^9, 3.8166144001431675`*^9}, {
3.816615839078925*^9, 3.816615886097247*^9}, {3.816616386758957*^9,
3.8166163886356173`*^9}, {3.816623331893118*^9, 3.816623342642942*^9}},
CellLabel->"In[26]:=",ExpressionUUID->"71efe8ad-b92c-4464-8c54-70b565629b0b"]
}, Closed]],
Cell[CellGroupData[{
Cell["Operation", "Subsection",
CellChangeTimes->{{3.81661600669168*^9,
3.816616008525737*^9}},ExpressionUUID->"69874902-05cd-4fe2-850e-\
c9728096bceb"],
Cell[BoxData[{
RowBox[{
RowBox[{"creationops", "=",
RowBox[{"FullSimplify", "[",
RowBox[{"CoefficientList", "[",
RowBox[{
RowBox[{
RowBox[{"CoefficientList", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"\[Alpha]", "+",
RowBox[{"\[Beta]", " ", "t10"}]}], ")"}],
RowBox[{"(",
RowBox[{"\[Gamma]", "+",
RowBox[{"b10", " ", "\[Delta]"}]}], ")"}], "t21", " ", "b21"}],
",",
RowBox[{"{",
RowBox[{"t35", ",", "b35", ",", "t25", ",", "b25"}], "}"}]}], "]"}],
"[",
RowBox[{"[",
RowBox[{"1", ",", "1", ",", "2", ",", "2"}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{
"t2dump", ",", "t3dump", ",", "b2dump", ",", "b3dump", ",", "t16", ",",
"b16"}], "}"}], ",",
RowBox[{"{",
RowBox[{"3", ",", "3", ",", "3", ",", "3", ",", "2", ",", "2"}],
"}"}]}], "]"}], "]"}]}], ";"}], "\n",
RowBox[{
RowBox[{
RowBox[{"fockstate", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
SqrtBox[
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"i", "-", "1"}], ")"}], "!"}],
RowBox[{
RowBox[{"(",
RowBox[{"j", "-", "1"}], ")"}], "!"}],
RowBox[{
RowBox[{"(",
RowBox[{"k", "-", "1"}], ")"}], "!"}],
RowBox[{
RowBox[{"(",
RowBox[{"l", "-", "1"}], ")"}], "!"}],
RowBox[{
RowBox[{"(",
RowBox[{"m", "-", "1"}], ")"}], "!"}],
RowBox[{
RowBox[{"(",
RowBox[{"n", "-", "1"}], ")"}], "!"}]}]],
RowBox[{"creationops", "[",
RowBox[{"[",
RowBox[{"i", ",", "j", ",", "k", ",", "l", ",", "m", ",", "n"}],
"]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"j", ",", "1", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"k", ",", "1", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"l", ",", "1", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"m", ",", "1", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"n", ",", "1", ",", "2"}], "}"}]}], "]"}]}], ";"}],
"\n"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"P", "=",
RowBox[{"Map", "[",
RowBox[{
RowBox[{
SuperscriptBox[
RowBox[{"Abs", "[", "#", "]"}], "2"], "&"}], ",", "fockstate", ",",
RowBox[{"{", "6", "}"}]}], "]"}]}], ";"}]}], "Input",
CellChangeTimes->CompressedData["
1:eJxTTMoPSmViYGAQAWIQbaXtnTYv/41jS4N3Jog+sD++GEQ/OddRD6L5lMqb
QXTDxLo2EL0m/GMXiE7ZHt0NohcaPp0IortOTp0Mohnc/swE0QfnWc0Cm7fJ
ce9CIF24oOEkiN4juPM8iL5QrHUBRDsVv70ColV+dV8H0emzPj4B0TcW5j4D
0R8Mrr4G0WYVe96A6FL5tg8gesrKoi8gmu8Wp9IiIK3Woa4CoifPTDYG0To7
94WDaN6312JA9Iybb8H05h0T00H0WsH2WhD9YbtjF4iu6dPsAdFVku/ngGie
oH3zQPRrQ5NdINqNg3k/iP7+w/EkiN6lO+8MiAYA9kiwtA==
"],
CellLabel->"In[27]:=",ExpressionUUID->"4de25ea5-3e03-4f17-a02d-09296bbd1ff8"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Total", "[",
RowBox[{
RowBox[{"P", "[",
RowBox[{"[",
RowBox[{"1", ",", "1", ",", "1", ",", "1"}], "]"}], "]"}], ",", "2"}],
"]"}]], "Input",
CellChangeTimes->{{3.8170593670330567`*^9, 3.817059372060674*^9}},
CellLabel->"In[36]:=",ExpressionUUID->"f583ef9d-aec0-4fa4-8bc3-5a200bc536eb"],
Cell[BoxData[
RowBox[{
RowBox[{"0.06249999646983818`", " ",
SuperscriptBox[
RowBox[{"Abs", "[",
RowBox[{"\[Alpha]", " ", "\[Gamma]", " ", "\[Eta]"}], "]"}], "2"]}], "+",
RowBox[{"0.06250000146224081`", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "2"}], " ",
RowBox[{"Im", "[", "\[Phi]T", "]"}]}]], " ",
SuperscriptBox[
RowBox[{"Abs", "[",
RowBox[{
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox["\[Alpha]", "2"]}]], " ", "\[Gamma]", " ", "\[Eta]"}],
"]"}], "2"]}], "+",
RowBox[{"0.06250000146224081`", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-", "2"}], " ",
RowBox[{"Im", "[", "\[Phi]C", "]"}]}]], " ",
SuperscriptBox[
RowBox[{"Abs", "[",
RowBox[{"\[Alpha]", " ",
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox["\[Gamma]", "2"]}]], " ", "\[Eta]"}], "]"}], "2"]}],
"+",
RowBox[{"0.06249999768119809`", " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ",
RowBox[{"Im", "[", "\[Phi]C", "]"}]}], "-",
RowBox[{"2", " ",
RowBox[{"Im", "[", "\[Phi]T", "]"}]}]}]], " ",
SuperscriptBox[
RowBox[{"Abs", "[",
RowBox[{
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox["\[Alpha]", "2"]}]], " ",
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox["\[Gamma]", "2"]}]], " ", "\[Eta]"}], "]"}],
"2"]}]}]], "Output",
CellChangeTimes->{3.8170593246853294`*^9, 3.817059372722764*^9},
CellLabel->"Out[36]=",ExpressionUUID->"f4239936-6886-496e-b99a-6a3a435007ba"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"F", "[",
RowBox[{
"\[Eta]_", ",", "\[Alpha]_", ",", "\[Gamma]_", ",", "\[Phi]T_", ",",
"\[Phi]C_"}], "]"}], "=",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{", "}"}], ",", "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Beta]", "=",
RowBox[{
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox["\[Alpha]", "2"]}]],
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]T"}]]}]}], ";",
"\[IndentingNewLine]",
RowBox[{"\[Delta]", "=",
RowBox[{
SqrtBox[
RowBox[{"1", "-",
SuperscriptBox["\[Gamma]", "2"]}]],
SuperscriptBox["\[ExponentialE]",
RowBox[{"\[ImaginaryI]", " ", "\[Phi]C"}]]}]}], ";",
"\[IndentingNewLine]",
FractionBox[
RowBox[{"Total", "[",
RowBox[{
RowBox[{"P", "[",
RowBox[{"[",
RowBox[{"1", ",", "1", ",", "1", ",", "1"}], "]"}], "]"}], ",",
"2"}], "]"}],
RowBox[{"Total", "[",
RowBox[{"P", ",", "6"}], "]"}]]}]}], "\[IndentingNewLine]", "]"}]}],
";"}]], "Input",
CellChangeTimes->{{3.816626415315332*^9, 3.816626527812541*^9}, {
3.8170592539454165`*^9, 3.8170592656081123`*^9}},
CellLabel->"In[31]:=",ExpressionUUID->"80fe0eb7-d31f-4fe8-bb5d-cceb27c1ec94"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"DensityPlot", "[",
RowBox[{
RowBox[{"F", "[",
RowBox[{"0.80", ",", "\[Alpha]", ",", "\[Gamma]", ",", "0", ",", "0"}],
"]"}], ",",
RowBox[{"{",
RowBox[{"\[Alpha]", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\[Gamma]", ",", "0", ",", "1"}], "}"}], ",",
RowBox[{"PlotLegends", "\[Rule]", "Automatic"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "1"}], "}"}]}], ",",
RowBox[{"LabelStyle", "\[Rule]", "Large"}], ",",
RowBox[{"FrameLabel", "\[Rule]", "Automatic"}]}], "]"}]], "Input",
CellChangeTimes->{{3.816626548360756*^9, 3.8166267245781565`*^9}, {
3.816626760205084*^9, 3.8166267795888767`*^9}, {3.816626824225766*^9,
3.816626838481879*^9}, {3.816695368834161*^9, 3.8166953930176463`*^9}, {
3.816695426756462*^9, 3.8166954510329356`*^9}, {3.816695507970561*^9,
3.816695509975716*^9}},
CellLabel->"In[32]:=",ExpressionUUID->"517a6976-8d6a-4f1d-b938-d54c9135de68"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{
GraphicsComplexBox[CompressedData["
1:eJx1l0GKFEEQAAd/Ius/6ihefYLgScS3OE/wCYL7gLx6q4OgexBEBBG1rl7c
nekmqsmoqmaWJLqnpzvIqszcxy/ePH/56HQ6/bv8XaOP85Nnl8/7kjk6392+
vnw+6nrtvF2++9T5y36i8//76/G189vt/m+db654/t75w3b7j85Ptwf+7Px5
+/1fnV9tL/i783408eE5j9EZ33y9dsYXxhfGF8YXxhfGF8YXxhfGN+etiY88
zj2PmH1DviHfkG/IN+Qb8g35hnxDviHfkO+4Tud5PDwd8YXxhfGF8YXxhfGF
8YXxhfGF8c37romPfThfpzF45etHzPmtym9VfqvyW5XfqvxW5bcqv1X5rcrv
WGfm+zCGvNkLdsQXxhfGF8YXxhfGF8YXxjfXzSY+6ui8zsSwLp03e8GO+ML4
wvjC+ML4wvjC+Oa+0MqqT8zraAz7zuvSebMX7IgvjC+ML4wvjC+Mb+57raz6
IL6um64r3ndel86bvWBHfGF8YXxhfGF8c19vZdXn8XVfcN10XfG+87p03uwF
O+IL4wvjC+Ob55ZWVnMMvu577guum64r3ndel86bvWBHfGF8YXzzXNbKak7D
133dfc99wXXTdcX7zuvSebMX7IgvjG+eO1tZzaH4em5xX3ffc19w3XRd8b7z
unTe7AU74pvn6lZWcza+nss8t7ivu++5L7huuq5433ldOm/2gh3xXf0fge98
7vRc5rnFfd19z33BddN1xfvO69J5s1cb4v6+73rEHN5f94+uj/fxPe6HV9G/
4/v8Hn7v/F7nHvd8/F2ed8zPOS/P+/l+zikdbTg/f24rDyi5QXo=
"], {{{
EdgeForm[],
GrayLevel[0.8],
GraphicsGroupBox[{
PolygonBox[CompressedData["
1:eJwBCQX2+iFib1JiAgAAAKgBAAADAAAA4gIRFQUGEgIDEwMEFgYHFwcIGgoL
HAwNGAgJGQkKFAQFKhobGwsMKRkaIxMUIBARIRESJBQVJRUWKBgZ7+XkJhYX
JxcYHQ0OKxscLBwdPy8wRzc4MSEiLR0eMiIjNCQlNycoMyMkNSUmNiYnLx8g
MCAhOCgpOSkqQDAxPCwtPi4vQTEyIhITQjIzRDQ1OiorOyssQzM0RTU2gHBx
RjY3f29wTj4/Sjo7Szs8Tz9AUEBBU0NEVUVGUUFCUkJDTT0+Y1NUVERFYlJT
XExNWEhJWUlKXU1OXk5PYVFSV0dIX09QYFBRVkZHZFRVZVVWd2doSTk6aVla
ZlZXa1tcbV1ecGBhbFxdbl5fb19gZ1dYaFhZcWFicmJjeGhpdWVmdmZnempr
SDg5e2tsfW1uc2NkdGRlfGxtfm5vWkpLgXFyzb2+hnZ3g3N0hHR1nIyNh3d4
inp7i3t8jHx9jX1+hXV2iXl6jn5/kICBlYWGkoKDk4OEloaHmIiJm4uMkYGC
mYmKmoqLj3+A8PjnnY2On4+Qo5OUoJCRoZGSno6PpJSVp5eYqJiZqZmaqpqb
opKTq5ucrJydrZ2er5+gsKChsaGisqKjlISFs6OkuKiprp6ftqant6eotKSl
gnJzuamqu6uswLCxva2uvq6vwbGywrKzxra3yLi5w7O0xbW2v6+w1sbHx7e4
1cXGzr6/y7u8zLy9z7/A0MDB5sXUyrq70cHC0sLDybm618fI2MjJCBgXvKyt
3MzN2cnK3c3O38/Q4+IQ3s7P4NDR7ejS2srL28vMAhIRAxMSCRkYBhYVBxcW
ChoZuqqrCxsaDR0cBBQTBRUUDBwb5B0OECAfESEgEiIhFCQjFSUkFiYlFycm
GCgnGSkoGiopGysqHCwrHS0sHy8uIDAvITEwIjIxIzMyJDQzJTU0JjY1Jzc2
KDg3KTk4Kjo5Kzs6LDw7Lj49Lz8+M0NCMEA/MUFASVlYNERDNkZFN0dGOEhH
OUlIMkJBOkpJO0tKPU1MP09OQFBPQVFQQlJRSFhXQ1NSR1dWPk5NRVVURlZV
RFRTNUVESlpZbn59TV1cTl5dT19eUGBfUWFgUmJhU2NiVGRjVWVkVmZlV2dm
WGhnWWloW2tqXGxrXW1sXm5tX29uYHBvYXFwYnJxY3NyZHRzZXV0ZnZ1Z3d2
bHx7aHh3anp5TFxbbX18b39+cIB/cYGAcoKBa3t6c4OCdISDdYWEd4eGeYmI
eoqJe4uKgZGQfIyLgJCPdoaFfo6Nf4+OfY2MEyMigpKRhJSTiZmYhZWUhpaV
ipqZi5uajp6dkKCfjJybjZ2ciJiXnq6tj5+ena2sl6emk6OilKSjmKinmamo
nKyrkqKhmqqpm6uqkaGgn6+uoLCvssLBu8vKpLSzobGwpra1qLi3q7u6p7e2
qbm4qrq5orKxo7OyrLy7rb28s8PCsMC/scHAtcXElaWktsbFuMjHrr69r7++
t8fGucnIusrJvMzLg5OSwdHQvs7Nv8/OwtLR8Ofmx9fWydnYxdXUxtbVwNDP
yNjXytrZ6+QOzNzbzd3czt7dz9/eHeQe0ODf8u7jy9va7uriEOIR6ODRpZWW
5OUe+fHhvc3M8eno7ObU6Ong8+/r9u4B4uoC9PDs9fHt5ufE0ujR4+7i9+8P
7vIB7PDm7fHo7/MPxebE8PTT7vbq6+/k+PDT8fXh7/fl8fnpl2heKQ==
"]]}]}, {}, {}, {}, {}}}, VertexColors -> CompressedData["
1:eJx1mHk4VH//xkWSUkgqiYhUlCctaOFuUUgLSgppU6lQtFhKX0skZanvQ1ES
9VVp0UKWlIgWZMuMWc4Mc2YiFBFC0TPP73eu57/Pua75Z67xca773O/7fr2P
7p4jjvtkZWRkBqQfOelnzYBXNK3VCFW5FQU+O4XoMnGJP6oiQvTpVL1fg0LM
zkgINtwsRCGV3vV0qgg1wS23Yy4L8aBVz8nfWIhfajufeywRIeZeT47fZwHO
x3V7pHUJYN+jO3+tlwiRL85dHt9LIb4oTTgzRYBa23f3Op6KkKdS0mX7ho9N
Y/vCHpsIoGTkE1ylROP7icsnohx5cGt1XDPlMYWhE8YSk0Aa37jrBq//w8Hj
7xPnu2pQUJt2d5/VTxpLXycaFxaxsUPP61GSDx+Gy8vfT4wUo9Y7qtn7dj2G
rozyUH3Cw/ywqR5J+hIYB8inBTvX4bKFf+FkmotmQ+/M7FoJMjYW6u+dXwPx
TXk7BR4H+rb+rkIvCZ59ll1roFMJ89UFPWn3G/CzVndgyFsMg8afs0NuvUPq
puGV8V5syJ/07lfeTeOCV8uve10lmB7R7pCnzYKNKGjiI2uynsMuFw24HCGu
zHufZmQtxIItu9e/0Bfhb4eQ0jw/IcKTroZZ6wmhbFv+pWiVCF9WxLke/CCA
HxUo865FAMpj3afw4yK4/XL/BSGFtqJR/boJAtRwPSrT80V4WLbmlcozPvbI
x7T/NhIgxn2pxd+qNN6bWdbMXMdDeuR7/syHFIS12by7p2h8PZhyfFEGByVj
4BUv1bl2UWzjZKnOEXToIftyNt7s7Tvu4MfHBaPh1/1hYtzM5moI8+thkZFv
kJzHQ05Vp+V6bQkqTTx/hgfUQZRR8OXpNy6clNdn/XkngeEiddeyLTXYpzPM
s+jgYPOMf71tCZaA+3yCYGFwJaIv+KucKmtAxOzxK96FizGqeFz4BvX3eLZ3
JH/uRTZs5Koas6X3uWh2ScjxgDfQ6647OceKBT2bgt/LD5D9SdKTl6zz4aSa
EL/LN7t+HCFEbE30gyJ3qW+HN5w9fUKAsf82O2xTLkDocAnfOEaEOhvzlB9J
FNqtozboBkufg5PlQM5HEdTvNOueCOOjvnJGactUAay88YGaTmPMt2hjWRMe
lvZfmGF/m4KLqW2QUjiNM+rTWwfvcDDtUdaM+VMphOak2l3uo5HYsEdzYhsb
fLXtFqeC+Vh9Nf9aeqAY+ZKIl3aD9QjQtb9lWc2D9Q/ftW5jJQjcqvKe4teB
3RfVe12FB6PlUUsqMyX48/fV3K0lNdggE8KaZsSFBz//z+InErjsSh1VlPAR
Nws+13uqcdD+kjPuZJkYHXXGDjVeH6Atb7jhajsb5mbP8nQraWwsdBvNUi6D
taZSiGMOC3uURxalvCXPO8mfJD3L3fNVl7RRmOvbO8s5SYDKQzVNWs9FMFiy
YNW52RS2/VnMsnIS4OiMMalKnSIcTb3YmWHCx+FSJ37oMIVl8Z0TUsxoDI2u
PmGowMPGOfVp1xKk38+J698WR6PAwcfzeyYHvxQsty/VpGCqOXj7WS+Nvk0G
VtOmN+BHXOdB7Xg+7rb1GikdEsO5d6XD+P0sOMpJkrR6eZD4PS7Jahdj9e7r
31zCPmH51hFD0+14uDjPdBMVKIHaafVAl6BaNBuZVTtf4uJTwGmPXQqfMW2Z
0sLf3tVgq1VYJSZyYHQsxHPUIgni07K/+j6uwMv1iZHJFxsQmNpQwd4sRpR1
z4uB1+/QMDhrxevjbNyYUnGl7wBNzE9PZt47mXmvZOad5E+SngvOb2YnRPNx
Z+7kEW+0BHhzN2JRoBYN+lfS9t7XPNQXbhnVwqag6qL0qXAbDf3brarZlVzs
2SJsUg6loGxxRzHqJo2gSxivnsWR5luGRtY0qZ9zA8Snemgsb9mscvFgAzIE
LVutM/nQOWWnabRFDDd3Vk/eEAv6mh2vDhnycc/J8IRmkRgr5kVm7/Guh3bg
bdP8FGlub7U2fSfVzWlEroZfQR2CY2MihCN5+GtY69mNbAlUGvrsYkbVQltx
p5WsgzRnUj62G0jzfMAqtdysvQouo5dZrfbjYN6e8Iee6hKMOlttU3qtAkKN
H6pUZAPCEqIO/tkoJvYRKT9J8+7P+NOb8ecSxp8kPTcpPpxfNZ+HQwt6KQtp
PshFHSvRlOaD5+gWbmEoF46F9m65+ynIXFnyJf45jdNVO0cczOZgkutF31ht
Culdz361dUtzO+Lc+IQPDRgZVO2jUMlHa2ox57uZGBkv5+yeVsLGisNlXkeO
8PFps8vIPRFiPK6Jcu+6wULUoM01TUU+ZmktwE+eGJPo5K2au+uxduK4s55J
PCSqq+vvNZfAwqHGNlvxE9aVmK7K1+FB6WxYtWOKBGcv9V1pTqpFsrD9yclU
Lo7ay8b6KH6GQ8C5Lsq1BqvWfgk37uagJ2tWx5JQCbHfSX1Eyk/SvJP8uYfR
057RU5bR8/li5bZDBlw4DEkCUtdSiJFL2eVZS0NuUt6xrwUcmAcH+nF0KJxe
JtMo00Xjjdf6cH9wIMp5Yn2il49c7eMh69TFmLt8/Evb7AbkPN2SfqGUj1V2
WQYLLcWomfgv1bsaDQhSvFm4MJaPlZk7YjMOi5Fs13ZAeISN4KKK1VGOfFTt
+3AgNkXKFSZua5HLQjolY56hysdbmwzfuk9iiLsEXnrf61HCHl3+oIKHzdzS
hG3jJZiSkXukdaq0fwP+mL4M4WHy1SMK8hskRF5qZPr9FdPvLKbfSX1Eyk/S
vJP82af+/3ouYvQMYfTM03BMTy3hoCJUZBKjJ/VDvteplx3S+3y7gxVWwUH1
jxkfHhhQOHaz+IXOVxozxGa7ElkcdL0972RmSGHY8sw5w1Yad574pvGaOHBW
cOyfa0zB/g27hPeZRlkqV9b+GweqzZnsmAUUuu4/2WhC0ygcOjvQN8hBrl6B
hosZhVdfb482FtJIKebJ1yhycY2T2nFpOQXDsu7yGi6NV9tTn/E1pL66HhS5
eBWFu2sjvTRYZP4k8RKp30l9tInJzwdMfmoy+dnPzLsiM++fmXkvZ/wpZvyZ
w/iTpCc/7tbEST5c/F7xxLV6J4VYjxtJzoU0HA9fT7k5iwdPR8cZI9MohI+9
6F4VIeWTW9b89H4ejiaetwyQ9nbXlmS7nTY0hjVVDLNEfIyNnaWzc7kAYv9s
10Y5Gr5TsoWHxBQe0I9E3YkCLIh16dPKEyFg/ZPjccMCTCi4/vT4oDQ/I18m
SjxEsNVx+9K+sBESlqLDvANCsOfJ7+9TFBF5nsSfRQwvBTG8tIbhJQ+m352Z
fhcx/U7qI1J+kuad5E+SnhMG23KcHvDBTr+3O3WOAGXBMY9j1GhoH/2lObBP
gHQXr9z6UgFsFB3mvrokQv9shRXznBuR4h8259IxIfycxyYk/WmCaNyg6l/F
Tbi5+H5Ds2kjZOTsMpa6NWHpWY68f58I5g3ReaNHN8Gvy+3pgg2NmDm7clvY
ejH0Ume9tQhpwuXWZI7SCwFxPyLxPIk/SbxE6ndSH5Uz+enP5OdqJj9J807y
52RGz5uMnusYPQfVix8dnNyE9rsaD1yKhIh+vF1g+roJ8wrUJhs8FIFae8b8
PNUIjwTrrH23GtHulFl2MEAMFV/nF/fjmsCq0/f1OSdA50ozbdMznyFR8VP4
Z40ILYnRfv8Y8HGjsyHxdGkLRpwMXGg9gUamabN4XBCHuG+S9iMSzysy/Cli
+LOK4U8SL5H6PYbpo0Cmj+qYPiLlJ2nevzL+vMr48yTjT5Kell+8s+YOiZFq
+Ehuy6smFIgX73VupyCwaglV+KcZYckLl6yU/p1h9UCvvLTXY+JqYxY9bsUr
zt+Gk4pouO3b6dthxkZy5YjGmdRXbNfrbfOUnre1+Pb+sx11xP2dtG+S9qP5
DM/zGZ6fz/D8KIY/pzD8ac/wJ4mXSP1O6iNSfpLmneRPkp47Oges3m9vw+4d
co8eDdJYtvqvgNijLLi+2F79VOMblvXXrLa9IoGp3sBhXa963D/WcWBq6zfI
lVmtrExpRnfSgNYYPy7xfQhpfyftm6T9iMTzJP4UMLz0muElJ4aXSP1O6iNS
fpLmneRPkp7drafir4/rQI5XRobqQDMyBUnrPbbwYFJ85tzIhZ2oi5wXn8Bu
xZTodIvi3Cbi+yXS+xDS/k7aN0n7EYnnSfxJ4iVSv5P6iJSfpHkn+ZOkp8z/
Xd/hsf+/VweG/vz3aoG+wruvAUqNCNKxnGW/XYjKNr3yWHURFEbPjJml3ogN
odetdrgJEXhj15kRaiJojTN8wzpSBnZAsvtQNQs9Fe51kwUirMr665G92hv4
KN5epzqbBfsLO+XiNpF/v2hKq+SjfRn0oje9dH8nfY49Gd2fWCKkeS/MkbHs
RNtiX1ml7lbwPkUMV3Gb8KGszf5oTyc2Xn6hoFfQjsLhMcZuymLifZLOJ90n
6XzPM+YPIzQaobDe0Lx5hxDnFdoa8lRFkNP3vVNrWIrDMXLaOSdYuOHx4Myf
ePL31UcbQgN/dkJgMVa2oLgdYZlfAsqmiBFdIMx7ptmIw1E+WzPdhej5blY7
UXq+jZVTTOGMUpzZ0bjj5DEW9g1+VdaME2GDcn/rhMESZCrMcR2vy0LZ9AS9
DFvR/57vjd2ndzvLfoOi2Qf2Xo/PxPNJ55D+L+n8/wDEgOwc
"]], {}}, {
DisplayFunction -> Identity, DisplayFunction -> Identity,
Ticks -> {Automatic, Automatic}, AxesOrigin -> {0., 0.},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, AxesLabel -> {None, None}, FrameLabel -> {{
FormBox[
TagBox[
TagBox["\[Gamma]", HoldForm], HoldForm], TraditionalForm], None}, {
FormBox[
TagBox[
TagBox["\[Alpha]", HoldForm], HoldForm], TraditionalForm], None}},
DisplayFunction -> Identity, AspectRatio -> 1, AxesLabel -> {None, None},
DisplayFunction :> Identity, Frame -> True, FrameLabel -> {{
FormBox[
TagBox["\[Gamma]", HoldForm], TraditionalForm], None}, {
FormBox[
TagBox["\[Alpha]", HoldForm], TraditionalForm], None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]], LabelStyle -> Large,
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultPlotStyle" -> Automatic, "GridLinesInFront" -> True},
PlotRange -> {{0., 1.}, {0., 1.}}, PlotRangeClipping -> True,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{
FormBox[
StyleBox[
StyleBox[
PaneBox[
GraphicsBox[{
RasterBox[CompressedData["
1:eJxFlwmcjvUWxyV3YmZsZbtJ9i1q7q2spR9ZrrJUuLYUQiEx1iRRdmNwiySk
kEtlS8qSUYYwxjIz774/27svM7JV0r3P/zznmff9fHx4/6/3Of/fOd/zO+dt
/tqMIZPurVKlSpH+5x79j/j3mmnhO19dK0TT5fGXjj1sQ395Qb0D/5LxUFzp
/ODPZ/Br2aDX6oy0YeIr3n73zpexf4p/Zt66s/il2aFZkz+04X1Xj3dG7pXx
TMS1748xv2Dz9PuX/nzRhm3//vyb/U4ZV1+3had2OIc3T87Z0KiaHUdLq/ir
1lAwLljSwvP7OTyT6diV28MOiwjTTcG1CZdeGXDhPOqO7Hbkwjw7yovOPLt/
ioIlyvnNP266AG331rPNDtmR1a/13KpbFDww/oylw6QiHL1+1zo/akfbwhV7
RlxU8GXgVK1tT1xEXi8RyYHedEEFnV898Vx21WKMWV94s90YB+htBxXnvN8v
W1hSjH/4WmV88LEDCzp/88yIl1WMfPnbnxLbL6Fqh5UNXFcc2HQ4e+a+NSpI
7luXYZsfbfPP6k4cfmz6rntOqlgwcm+ny09dwd5zA7qs7uXEla+v2oYnVJDM
zKt4V2R3gRMx/Vv7HtI4T1cxWMg/4kTGro+63zNIQ4Opg66vG1qC5iLNSSda
NL0xbfh7Gsa2L65z/kQJbgi5bVzosVU8QMPeSP/H/te8FOdF2HEujGooMq2h
Yo+4SCm2fCpeLszVqzC8VhDtFuUff7NGGR49/Fn5nnMu2LaEmuyJaBg/bEjb
L1aX4fTFHX1/uO7CkzuPdPmtUMOWRxp9bK1hwTBVFMCNDV8teem5zzSUiXLm
WRDRKSob5Mb1Qy++ueVtjfVaWa8bQ449rBOmoTcBZEVtCuzGYT27T3fUsHBp
zsD/ZtqwU4961+pG3fMnjq3N0HBk1M3j7jwb182D3CuryvySikTOj21rZ9lR
NO/U5w/meFCiZznnRxWt9er1XmPn+nqQQ/VU8arAN8vB+fBgvfZr07IZKtfT
AR1aXbAHqfjP3Vo+r+KqCJPlREPXldtDVQ8G69WY00pF9bGbB9bPd+Lra6Ix
vNivU/DLXwp6dhIXdDHPXmQTMArmZ7XSU+1CqU77oqleTKvx+xdvfKfgkBz9
+HC2G5OeCryw9hMvLtURghXEjh68N5zvxm9DRaK96CDSPllBi3VzZzau6UE+
9asXeU0npEY/q2D0RPEAD/evj7lSsEGnaFlNL6i8A3x4Tqfj7i0ZxRTHi34i
zfN9+EqndXCpjGrh/HbJmj6Q3N0+VCewZDxdMGRT83U+vCXClvkwuc+UGRXL
ZebIjyr08jN3Mg6QP/ixUXz8qB9thv5NJ1pGiDoygLbieqP9WDHaclKtJ+Nh
Aj0AasOVfgTH77A/WS6h461PfBvuk7gv/OgrwhZJ7E8SFLIpP77UKXPskjBR
2MZKie8VQDVKvIT3j/bUrUOCiKqnChMWC8OSsG1ny+N/3idj21lhZAGQbTwu
4fjajIoG/WX2gQDnXYJd9PkqGWd0qtYXBtgPAviV/EqGLlZPdQCndXreXRpA
rRcObpxUXeH76Pfo/9N7TboG8Ej3j4oX91cgqPW1ktBzhDAYP8jOVil8Twl/
Tbqtjd/hB8m/oHD/SCgQNjrcj0V3uudeqa7y/SXuHz+2ijbur4LsVddP4X7y
Gb67WuV+kPCHTmFstg9WvQpNilS8I2xsn4RjAr92PqNPamisV8LbdGGda2p8
jfmW0Fng86HX8JPVGudBwg2P44PZ/bwgXIo0fCHkZsg4Epv9ff07HsNnagSZ
Vxmzfq8dPXrQg/cgGimIJ+gl43FKiMfwn9VB/lyGXqQX/2zkwQ/17xSnioKV
/B1srS3dftlt+FJmCJS+eTKmPylIcHN/h7hvZHTsLSad2/CrvBDzJEN00/K4
i+dJCKmFIrCMr8eJi7vQR/hYZhhdV4sBI4NkDnNhnLCH58MQLjQtLLPPuoz6
5IVRLGz1rgxqt1NOnpdh1Bc2WU8BjbdZTsP3MiM8nxRMpMBOlPZxVtx4PsLz
RYFO8Uo910gKP1wT4XmtgMblfxyo3nj7q+2LIyCbma5gp95dXfs6ICjonRUF
2cZyBeMJGDt60QCO4qqwga0Kmomxc8AOGv9roqC2PqwgoLt+0wl2vHO+vY5Y
tJLT7XV3F5xuaDd8NSsGo+0UjGkmnmxjP4rhlsDqpoLGBKQNZOtrYuyjKtxi
rehkQ1zgUhwDpbmFik9FemNW3Cd8ODvOe4M5p60Q3ZczMI4mVGCV56jVeG5+
HK/TS+W5beV7xUFjdqGKjSuX685kMXw7O4E/Fk3VNxcVQ3UXnDvTgo23MvTI
CfShxUnF/UJuGwu+FX6en4CeZL2gKkq+EwUsw+VL4pUAjUOHChpL68v4fQIz
BW4VKvtJGYz1K8HzUwO1ey0LEsRjwuCzpQay40EWzmOC547GXFvYl5NGnBEa
38PCz00acXM1UDtlW5m/JPeBxnWy8lxJcl9oPF+taE8DNmnELdCYYyv3Lcd1
mHuAje/HcSs07mNz3+S4mUGezzb2O47bMogJxJeN5zrH7RHkOtrxBtXV1Bvk
59pZZxJ0/dwgjtOcsfNeYuoNoiMJtnM/mHqDIJvOcHDdkqDHFARxPy0MDt6r
TL1BLKPvO/j7HLciCGqnsw5Qmg+YekOYSnuxEyT3mKk3BC81qJP9l+P2COEF
AszJ9TT1hkDXK3TyPcz6hozyVnUxV8lKnzP8w8VcmXpDILkfuJgrs74h5trF
XKU4Tojfs39mpri+IVA7wc1cpfjzMM8lN3OVYr1hkE2fcjNXKa5vGLSG3nUz
Vxx3RJg/9/DfHDc3zH3s4fpzXN13W4r166SHueK4u8LYJGxan0cGVxy3IMxz
2MtcpeAkvWHmxsvxUlzfMBI0H7z8uak3grEk2MtcmXojIJvu5mOuUlzfCPrw
XmZwZeqNMB8+vjfHzY3gEWEbt33Mlak3AmrfLn7+nqk3wvPQz1yZeiNYQvuv
n7ky6xsB/bebfn5v6o2AytspwFyZeqNwizTPCTBXpt4oSO6RAHNl1jcKCns9
wByVs94oSP7fJX5uOec7yn4vMVflrDdq7COjJOaqnPVGec+VmKty1hvFYtF4
myXmiuM6opwvie/HcSuixlx1mvsnx82MgWz7tsRccdyWMZANN5SZK47bI4bt
VBeZuSo3uBoRY90y6zT1xir3F4MrU28MZGObZObK1BvjOsrMVTn7VQzGz2+Z
uTL1xri+Mn+/nOsbw2PCBuorzJWpN851VzhPpt648bttmMJcmXrjzIPCXJn1
jYPkbFT4Hhw3N877vsJcmXrjWCHSbFGYK1NvnPlRmCuzvnFjbj+gMlcVHCfO
9U6fG/WLc77T58RHowTrT58b/CX4Hulz43dNgjnTKs+NuiW43ulzY79KVM5V
89zwqQT/vkmfG/t3gvkOVp4b+2QCr1DB0+fm3DbqnT6fTQVMsp+lz2kcjEsa
dakXqjw35kESJPel9DmN+x1J5ix9Xsjzisp9KX3egH5YJivngHluzL8U91X6
3Ph9lGK+0+fG3E1xnPT56+zTxvsI/g9eITvj
"], {{
Rational[-15, 2],
Rational[-225, 2]}, {
Rational[15, 2],
Rational[225, 2]}}], {Antialiasing -> False,
AbsoluteThickness[0.1],
Directive[
Opacity[0.3],
GrayLevel[0]],
LineBox[
NCache[{{
Rational[15, 2],
Rational[-225, 2]}, {
Rational[-15, 2],
Rational[-225, 2]}, {
Rational[-15, 2],
Rational[225, 2]}, {
Rational[15, 2],
Rational[225, 2]}, {
Rational[15, 2],
Rational[-225, 2]}}, {{7.5, -112.5}, {-7.5, -112.5}, {-7.5,
112.5}, {7.5, 112.5}, {7.5, -112.5}}]]}, {
CapForm[None], {}},
StyleBox[{Antialiasing -> False,
StyleBox[
LineBox[{{7.499999999999999, -112.49999999999996`}, {
7.499999999999999, 112.50000000000004`}}], {
Directive[
AbsoluteThickness[0.2],
Opacity[0.3],
GrayLevel[0]]}, StripOnInput -> False],
StyleBox[
StyleBox[{{
StyleBox[
LineBox[{{{7.499999999999999, -74.48060941828253},
Offset[{4., 0}, {
7.499999999999999, -74.48060941828253}]}, {{
7.499999999999999, -12.153739612188335`},
Offset[{4., 0}, {
7.499999999999999, -12.153739612188335`}]}, {{
7.499999999999999, 50.173130193905855`},
Offset[{4., 0}, {7.499999999999999,
50.173130193905855`}]}, {{7.499999999999999,
112.50000000000004`},
Offset[{4., 0}, {7.499999999999999,
112.50000000000004`}]}}], {
Directive[
AbsoluteThickness[0.2],
GrayLevel[0.4]]}, StripOnInput -> False],
StyleBox[
LineBox[{{{7.499999999999999, -111.87673130193903`},
Offset[{2.5, 0.}, {
7.499999999999999, -111.87673130193903`}]}, {{
7.499999999999999, -99.4113573407202},
Offset[{2.5, 0.}, {
7.499999999999999, -99.4113573407202}]}, {{
7.499999999999999, -86.94598337950136},
Offset[{2.5, 0.}, {
7.499999999999999, -86.94598337950136}]}, {{
7.499999999999999, -62.01523545706368},
Offset[{2.5, 0.}, {
7.499999999999999, -62.01523545706368}]}, {{
7.499999999999999, -49.549861495844844`},
Offset[{2.5, 0.}, {
7.499999999999999, -49.549861495844844`}]}, {{
7.499999999999999, -37.08448753462601},
Offset[{2.5, 0.}, {
7.499999999999999, -37.08448753462601}]}, {{