-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
59 lines (49 loc) · 1.94 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import torch
import torch.optim as optim
import torch.nn as nn
from model import NeutronDetectorCNN
from torch.utils.data import DataLoader, TensorDataset
from sklearn.model_selection import train_test_split
from tqdm import tqdm
import numpy as np
def load_data():
data, labels = np.load("data.npy"), np.load("labels.npy")
X = torch.tensor(data, dtype=torch.float32).unsqueeze(1)
y = torch.tensor(labels, dtype=torch.float32)
return TensorDataset(X, y)
def train_model(model, train_loader, criterion, optimizer, device, epochs=10):
model.to(device) # Move model to the selected device
for epoch in range(epochs):
model.train()
total_loss = 0
for data, target in tqdm(train_loader, desc=f"Epoch {epoch+1}/{epochs}"):
data, target = data.to(device), target.to(
device
) # Move data and target to the selected device
optimizer.zero_grad()
output = model(data)
loss = criterion(output.squeeze(), target)
loss.backward()
optimizer.step()
total_loss += loss.item()
avg_loss = total_loss / len(train_loader)
print(f"Epoch {epoch+1}, Avg Loss: {avg_loss:.4f}")
if __name__ == "__main__":
# Device selection
if torch.cuda.is_available():
device = torch.device("cuda")
elif torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
dataset = load_data()
train_dataset, test_dataset = train_test_split(
dataset, test_size=0.2, random_state=42
)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
model = NeutronDetectorCNN(image_size=10)
criterion = nn.BCELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
train_model(model, train_loader, criterion, optimizer, device)
# Saving the trained model
torch.save(model.state_dict(), "neutron_detector.pth")