-
Notifications
You must be signed in to change notification settings - Fork 1
/
leaf2.py
678 lines (547 loc) · 19.2 KB
/
leaf2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
from typing import *
import numpy.typing as npt
from itertools import islice
from itertools import product
from itertools import combinations_with_replacement
import numpy as np
from scipy.optimize import minimize, check_grad
from scipy.sparse.csgraph import depth_first_order
from scipy.sparse.csgraph import minimum_spanning_tree
from scipy.special import softmax, log_softmax, logsumexp
from scipy.special import xlogy
seeds = [29128, 70796, 35117, 72774, 59670, 18922, 28321, 59607, 38085, 34675]
def s_grad(x: np.ndarray):
sx = softmax(x)
g = -np.outer(sx, sx)
np.fill_diagonal(g, sx * (1 - sx))
return g
class Dataset:
X: np.ndarray
r: list
scope: list
def __init__(self, X: np.ndarray, r: list, scope = None):
self.X = X
self.r = r
if scope is None:
self.scope = list(range(len(r))) # scope
else:
self.scope = list(scope)
def split(self, v):
remaining = [ri for ri, vi in zip(self.r, self.scope) if vi != v]
scope = [vi for vi in self.scope if vi != v]
index = [i for i, vi in enumerate(self.scope) if vi != v]
Xv = self.X[:, self.scope.index(v)]
return [
(x, Dataset(
self.X[Xv == x][:, index],
remaining,
scope
))
for x in range(self.r[self.scope.index(v)])
]
class DatasetWithKnowledge(Dataset):
X: np.ndarray
r: list
scope: list
C: np.ndarray
epsilon: float
def __init__(self, X: np.ndarray, r: list, C: np.ndarray, epsilon: float, scope = None):
super().__init__(X, r, scope)
self.C = C.astype(int)
self.epsilon = epsilon
def add_noise(self, noise: float = 0.3):
# Add noise
# for every X inf+ Y, replace noise % of Y with r[Y] - ceil(X*r[Y]/r[X])
gen = np.random.default_rng(seed = seeds[0])
X = np.array(self.X)
noise_size = int(len(X) * noise)
for i, j in zip(*np.nonzero(self.C)):
ratio = (self.r[i] - 1)/(self.r[j] - 1)
if self.C[i, j] == +1:
gen.shuffle(X)
X[:noise_size, i] = self.r[i] - 1 - np.floor(self.X[:noise_size, j]*ratio )
else:
gen.shuffle(X)
X[:noise_size, i] = np.floor(self.X[:noise_size, j]*ratio)
gen.shuffle(X)
return DatasetWithKnowledge(
X,
self.r,
self.C,
self.epsilon,
self.scope
)
def split(self, v):
remaining = [ri for ri, vi in zip(self.r, self.scope) if vi != v]
scope = [vi for vi in self.scope if vi != v]
index = [i for i, vi in enumerate(self.scope) if vi != v]
Xv = self.X[:, self.scope.index(v)]
return [
(x, DatasetWithKnowledge(
self.X[Xv == x][:, index],
remaining,
self.C[index, :][:, index],
self.epsilon,
scope
))
for x in range(self.r[self.scope.index(v)])
]
def subset(self, variables):
remaining = [self.r[self.scope.index(vi)] for vi in variables]
scope = variables
index = [self.scope.index(vi) for vi in variables]
return DatasetWithKnowledge(
self.X[:, index],
remaining,
self.C[index, :][:, index],
self.epsilon,
scope
)
def bootstrap_samples(self, k: int = 5):
samples = []
for seed in seeds[:k]:
gen = np.random.default_rng(seed = seed)
N = len(self.X)
i = gen.choice(np.arange(N), replace=True, size=N)
X = np.array(self.X[i])
samples.append(DatasetWithKnowledge(
X,
self.r,
self.C,
self.epsilon,
self.scope
))
return samples
class ChowLiuTree:
n: int
parent: list
r: list
log_factors: list
values: np.ndarray
def __init__(self, parent: list, r: list, log_factors: list):
self.n = len(parent)
self.parent = parent
self.r = r
self.log_factors = log_factors
self.params_size = sum(e.size for e in log_factors)
ranges = [np.arange(ri) for ri in r]
self.values = np.array(np.meshgrid(*ranges)).T.reshape(-1, self.n)
def logpc(self, i: int, V: np.ndarray):
# P(xi = vi | Pa(xi) = vj); Pa(xi) = xj
if self.parent[i] < 0:
return self.log_factors[i][V[:, i]]
else:
j = self.parent[i]
return self.log_factors[i][V[:, j], V[:, i]]
def logp(self, X: np.ndarray) -> np.ndarray:
i: int
return np.sum([
self.logpc(i, X)
for i in range(self.n)
], axis=0)
def loglik(self, X: np.ndarray):
return np.sum(self.logp(X))
def logmar(self, query: list) -> float:
# [(i, vi), (j, vj), ...]
values = self.values
I = np.all([values[:, i] == vi for i, vi in query], axis=0)
return logsumexp(self.logp(values[I]))
def conditional(self, A: tuple, B: tuple):
# P(A|B)
return np.exp(self.logmar([A, B]) - self.logmar([B]))
def delta(self, i: int, j: int, sign: int = 1, eps=0.01):
# i is monotonically influenced by j
# cdef np.ndarray[double, ndim=1] row
terms = np.array([
np.cumsum([self.conditional((i, vi), (j, vj)) for vi in range(self.r[i] - 1)])
for vj in range(self.r[j])
]).T # |j| x |i|, P(xi <= vi | xj = vj)
# P(xi <= vi | xj = vj2) - P(xi <= vi | xj = vj1)
return np.array([
sign * (row[vj2] - row[vj1]) + eps
for row in terms
for vj2, vj1 in product(range(self.r[j]), range(self.r[j]))
if vj2 > vj1
])
def penalty(self, C: np.ndarray, eps=0.01):
p = 0
for i, j in zip(*np.nonzero(C)):
if i == j: continue
d = self.delta(i, j, C[i, j], eps)
p += np.sum((d > 0) * d ** 2)
return p
def mar_grad(clt, factor_grads, query):
_values = clt.values
_logp = clt.logp(_values)
I = np.all([_values[:, i] == vi for i, vi in query], axis=0)
terms = [np.zeros_like(f) for f in clt.log_factors]
for a in range(clt.n):
p = clt.parent[a]
if p < 0:
values = _values[I]
ratio = np.exp(_logp[I] - clt.logpc(a, values))[:, None]
g = factor_grads[a]
terms[a] += np.sum(ratio * g[values[:, a]], axis=0)
else:
for b in range(clt.r[p]):
values = _values[I & (clt.values[:, p] == b)]
ratio = np.exp(_logp[I & (clt.values[:, p] == b)] - clt.logpc(a, values))[:, None]
g = factor_grads[a][b]
terms[a][b] += np.sum(ratio * g[values[:, a]], axis=0)
return terms
def conditional_grad(clt, factor_grads, A, B):
# P(A|B) = P(A, B) / P(B)
numer = np.exp(clt.logmar([A, B]))
denom = np.exp(clt.logmar([B]))
numer_grad = mar_grad(clt, factor_grads, [A, B])
denom_grad = mar_grad(clt, factor_grads, [B])
terms = [np.zeros_like(f) for f in clt.log_factors]
for a, (n_grad, d_grad) in enumerate(zip(numer_grad, denom_grad)):
# for c in range(clt.r[a]):
terms[a] = (n_grad * denom \
- numer * d_grad) \
/ (denom ** 2)
return terms
def delta_grad(clt, factor_grads, i, j, sign, eps):
cg = [[conditional_grad(clt, factor_grads, (i, vi), (j, vj)) for vi in range(clt.r[i] - 1)]
for vj in range(clt.r[j])]
d = clt.delta(i, j, sign, eps)
terms = [np.zeros_like(f) for f in clt.log_factors]
for a, p in enumerate(clt.parent):
if p < 0:
for c in range(clt.r[a]):
rows = np.array([np.cumsum([e[a][c] for e in row]) for row in cg]).T
diffs = np.fromiter((
sign * (row[vj2] - row[vj1])
for row in rows # [:-1]
for vj2, vj1 in product(range(clt.r[j]), range(clt.r[j]))
if vj2 > vj1
), dtype=float)
terms[a][c] = np.sum(2 * d * (d > 0) * diffs)
else:
for b in range(clt.r[p]):
for c in range(clt.r[a]):
rows = np.array([np.cumsum([e[a][b, c] for e in row]) for row in cg]).T
diffs = np.fromiter((
sign * (row[vj2] - row[vj1])
for row in rows
for vj2, vj1 in product(range(clt.r[j]), range(clt.r[j]))
if vj2 > vj1
), dtype=float)
terms[a][b, c] = np.sum(2 * d * (d > 0) * diffs)
return terms
def penalty_grad(clt, factor_grads, C, eps):
terms = [np.zeros_like(f) for f in clt.log_factors]
n = len(C)
for i, j in zip(*np.nonzero(C)):
dg = delta_grad(clt, factor_grads, i, j, C[i, j], eps)
for a, term in enumerate(dg):
terms[a] += term
return terms
def sufficient_stats(parent: list, D: Dataset):
return [
unary(i, D.X, D.r)
if pi < 0
else binary(pi, i, D.X, D.r)
for i, pi in enumerate(parent)
]
def pack(x: list, parent: list, r: list):
packed = []
for i, p in enumerate(parent):
if p < 0:
packed.extend(x[i])
else:
for vp in range(r[p]):
packed.extend(x[i][vp])
return np.array(packed, dtype = float)
def unpack(x: np.ndarray, parent: list, r: list):
x_iter = iter(x)
return [
np.fromiter(islice(x_iter, r[i]), dtype=np.float)
if p < 0
else np.fromiter(islice(x_iter, r[i] * r[p]), dtype=np.float).reshape((r[p], r[i]))
for i, p in enumerate(parent)
]
def loglik_grad(clt: ChowLiuTree, ss: list):
return [
ssi - np.exp(lfi) * np.sum(ssi)
if p < 0
else ssi - np.exp(lfi) * np.sum(ssi, axis=1)[:, None]
for ssi, lfi, p in zip(ss, clt.log_factors, clt.parent)
]
def unary(i: int, X: np.ndarray, r: list):
return np.array([
np.sum((X[:, i] == v))
for v in range(r[i])
])
def binary(i: int, j: int, X: np.ndarray, r: list):
return np.array([
[np.sum((X[:, i] == vi) & (X[:, j] == vj))
for vj in range(r[j])]
for vi in range(r[i])
])
def p1(i: int, X: np.ndarray, r: list, alpha: float):
ci = unary(i, X, r) + alpha
return ci / np.sum(ci)
def p2(i: int, j: int, X: np.ndarray, r: list, alpha: float):
cij = binary(i, j, X, r) + alpha
return cij / np.sum(cij)
def pc(i: int, j: int, X: np.ndarray, r: list, alpha: float):
cij = binary(i, j, X, r) + alpha
return (cij / np.sum(cij, axis=0)).T
def compute_mutual_information(D: Dataset, alpha: float):
X = D.X
r = D.r
n: int = len(D.scope)
MI: np.ndarray = np.zeros((n, n))
for i, j in combinations_with_replacement(range(n), r=2):
if i == j:
_p = p1(i, X, r, alpha)
MI[i, i] = -np.sum(xlogy(_p, _p))
else:
_p2 = p2(i, j, X, r, alpha)
_pi1 = _p2.sum(axis = 1)
_pj1 = _p2.sum(axis = 0)
MI[i, j] = MI[j, i] = sum([
_p2[vi, vj] * (np.log(_p2[vi, vj]) - np.log(_pi1[vi]) - np.log(_pj1[vj]))
for vi, vj in product(range(r[i]), range(r[j]))
])
return np.clip(MI, 1e-20, None)
def compute_mutual_information_with_knowledge2(D: DatasetWithKnowledge, alpha: float, tries: int = 10):
X = D.X
r = D.r
n: int = len(D.scope)
MI: np.ndarray = np.zeros((n, n))
for i, j in combinations_with_replacement(range(n), r=2):
if i == j:
_p = p1(i, X, r, alpha)
MI[i, i] = -np.sum(xlogy(_p, _p))
continue
if not np.all(D.C[(i,j), :][:, (i,j)] == 0):
D_ = D.subset([D.scope[i], D.scope[j]])
assert np.all(D.C[(i,j), :][:, (i,j)] == D_.C)
parent = [-1, 0]
log_factors = fit_base_parameters(parent, D_, alpha)
clt = ChowLiuTree(parent, D_.r, log_factors)
prev = clt.penalty(D_.C, D_.epsilon)
for L in range(tries):
if np.isclose(prev, 0):
break
# parent: list, D: Dataset, alpha: float, lambda_: float
clt.log_factors = fit_grad_parameters(parent, D_, alpha, (10 ** L))
current = clt.penalty(D_.C, D_.epsilon)
if not (current < prev):
break
prev = current
_p2 = np.zeros((r[i], r[j]))
for v in np.ndindex(r[i], r[j]):
_p2[v] = np.exp(clt.logp(np.array(v)[None, :]))[0]
else:
_p2 = p2(i, j, X, r, alpha)
_pi1 = _p2.sum(axis = 1)
_pj1 = _p2.sum(axis = 0)
MI[i, j] = MI[j, i] = sum([
_p2[vi, vj] * (np.log(_p2[vi, vj]) - np.log(_pi1[vi]) - np.log(_pj1[vj]))
for vi, vj in product(range(r[i]), range(r[j]))
])
return np.clip(MI, 1e-20, None)
def compute_mutual_information_with_knowledge(D: DatasetWithKnowledge, alpha: float, tries: int = 10):
# fit chow-liu tree
parent = fit_structure(D, alpha)
log_factors = fit_base_parameters(parent, D, alpha)
clt = ChowLiuTree(parent, D.r, log_factors)
prev = clt.penalty(D.C, D.epsilon)
for L in range(tries):
if np.isclose(prev, 0):
break
clt.log_factors = fit_grad_parameters(parent, D, alpha, (10 ** L))
current = clt.penalty(D.C, D.epsilon)
if not (current < prev):
break
prev = current
# estimate MI from tree
n = len(D.scope)
C = D.C
r = D.r
MI = np.zeros((n, n))
for i, j in combinations_with_replacement(range(n), r=2):
if i == j:
_p = np.zeros(r[i])
for v in range(r[i]):
_p[v] = np.exp(clt.logmar([(i, v)]))
MI[i, i] = -np.sum(xlogy(_p, _p))
else:
_p2 = np.zeros((r[i], r[j]))
for vi, vj in np.ndindex(r[i], r[j]):
_p2[vi, vj] = np.exp(clt.logmar([(i, vi), (j, vj)]))
_pi1 = _p2.sum(axis = 1)
_pj1 = _p2.sum(axis = 0)
MI[i, j] = MI[j, i] = sum([
_p2[vi, vj] * (np.log(_p2[vi, vj]) - np.log(_pi1[vi]) - np.log(_pj1[vj]))
for vi, vj in np.ndindex(r[i], r[j])
])
return np.clip(MI, 1e-20, None)
def fit_structure(D: Dataset, alpha: float):
X = D.X
r = D.r
n: int = X.shape[1]
MI: np.ndarray = compute_mutual_information(D, alpha)
mst = minimum_spanning_tree(-MI)
dfs_tree = depth_first_order(mst, directed=False, i_start=0)
parent = [-1 for _ in range(n)]
for p in range(1, n):
parent[p] = dfs_tree[1][p]
return parent
def fit_structure_with_knowledge(D: DatasetWithKnowledge, alpha: float):
n: int = D.X.shape[1]
MI: np.ndarray = compute_mutual_information_with_knowledge(D, alpha)
mst = minimum_spanning_tree(-MI)
dfs_tree = depth_first_order(mst, directed=False, i_start=0)
parent = [-1 for _ in range(n)]
for p in range(1, n):
parent[p] = dfs_tree[1][p]
return parent
def fit_base_parameters(parent: list, D: Dataset, alpha: float):
X = D.X
r = D.r
n: int = X.shape[1]
return [
np.log(p1(i, X, r, alpha))
if parent[i] < 0
else np.log(pc(i, parent[i], X, r, alpha))
for i in range(n)
]
def f(x: np.ndarray, parent: list, r: list, X: np.ndarray, ss: list, alpha: float, C: np.ndarray, epsilon: float,
lambda_: float):
theta = unpack(x, parent, r)
log_factors = [log_softmax(t) if p < 0 else log_softmax(t, axis=1)
for t, p in zip(theta, parent)]
reg = sum([np.sum(e) for e in log_factors])
tree = ChowLiuTree(parent, r, log_factors)
denom = len(X) + alpha * len(x) + lambda_ * np.count_nonzero(C)
if len(X) == 0:
return (-alpha * reg + lambda_ * tree.penalty(C, epsilon)) / denom
return (-tree.loglik(X) - alpha * reg + lambda_ * tree.penalty(C, epsilon)) / denom
def g(x: np.ndarray, parent: list, r: list, X: np.ndarray, ss: list, alpha: float, C: np.ndarray, epsilon: float,
lambda_: float):
theta = unpack(x, parent, r)
log_factors = [log_softmax(t) if p < 0 else log_softmax(t, axis=1)
for t, p in zip(theta, parent)]
factor_grads = [
s_grad(t) if p < 0 else np.apply_along_axis(s_grad, 1, t) # np.array([s_grad(t[vp]) for vp in range(r[p]) ])
for t, p in zip(theta, parent)
]
reg_grad = [
np.sum(factor_grads[i] * np.exp(-log_factors[i]), axis=1)
if pi < 0
else [np.sum(factor_grads[i][j] * np.exp(-log_factors[i][j]), axis=1) for j in range(r[pi])]
for i, pi in enumerate(parent)
]
tree = ChowLiuTree(parent, r, log_factors)
p_terms = penalty_grad(tree, factor_grads, C, epsilon)
denom = len(X) + alpha * len(x) + lambda_ * np.count_nonzero(C)
if len(X) == 0:
return (-alpha * pack(reg_grad, parent, r) + lambda_ * pack(p_terms, parent, r)) / denom
ll_terms = loglik_grad(tree, ss)
return (-pack(ll_terms, parent, r) - alpha * pack(reg_grad, parent, r) + lambda_ * pack(p_terms, parent, r)) / denom
def fit_grad_parameters(parent: list, D: DatasetWithKnowledge, alpha: float, lambda_: float, init_log_factors = None):
ss = sufficient_stats(parent, D)
if init_log_factors is None:
log_factors = fit_base_parameters(parent, D, alpha)
else:
log_factors = init_log_factors
base = ChowLiuTree(parent, D.r, log_factors)
if lambda_ == 0:
return base
if np.isclose(base.penalty(D.C, D.epsilon), 0):
# print (np.isclose(base.penalty(C, epsilon), 0))
return base
init = pack(log_factors, parent, D.r)
args = (parent, D.r, D.X, ss, alpha, D.C, D.epsilon, lambda_)
# print (check_grad(f, g, init, *args))
# print (g(init, *args))
options = dict(maxfun=30000, maxiter=30000)
res = minimize(f, init, jac=g, args=args, method="L-BFGS-B", options=options)
theta = unpack(res.x, parent, D.r)
log_factors = [log_softmax(t) if p < 0 else log_softmax(t, axis=1)
for t, p in zip(theta, parent)]
return log_factors
class Node:
scope: List[int]
def __init__(self):
self.scope = []
def __repr__(self):
return f"<{self.__class__.__name__} scope={self.scope}>"
class BaseLeaf(Node):
scope: List[int]
r: List[int]
clt: ChowLiuTree
def __init__(self):
super().__init__()
self.r = []
@property
def parameter_count(self):
return sum([len(f)-1 if p < 0 else f.shape[0]*(f.shape[1]-1) for p, f in zip(self.clt.parent, self.clt.log_factors)])
def fit(self, D: Dataset, alpha: float):
self.r = D.r
self.scope = D.scope
parent = fit_structure(D, alpha)
log_factors = fit_base_parameters(parent, D, alpha)
self.clt = ChowLiuTree(parent, D.r, log_factors)
return self
def loglik(self, D: Dataset):
assert D.scope == self.scope
assert D.r == self.r
return self.clt.loglik(D.X)
def logmar(self, query: List[Tuple[int, int]]):
q = [(self.scope.index(i), vi) for (i, vi) in query]
return self.clt.logmar(q)
def logp(self, X: npt.NDArray):
assert X.shape[1] == len(self.scope)
return self.clt.logp(X)
def penalty(self, C: npt.NDArray, epsilon: float) -> float:
assert C.shape[0] == C.shape[1]
assert C.shape[0] == len(self.scope)
return self.clt.penalty(C, epsilon)
def delta(self, i: int, j: int, sign: int, epsilon: float) -> float:
return self.clt.delta(self.scope.index(i), self.scope.index(j), sign, epsilon)
class Leaf(BaseLeaf):
scope: List[int]
r: List[int]
clt: ChowLiuTree
def __init__(self, leaf = None):
super().__init__()
if leaf is not None:
self.scope = leaf.scope
self.r = leaf.r
self.clt = leaf.clt
def fit(self, D: DatasetWithKnowledge, alpha: float, tries: int):
self.r = D.r
self.scope = D.scope
if not hasattr(self, "clt"):
parent = fit_structure(D, alpha)
log_factors = fit_base_parameters(parent, D, alpha)
clt = ChowLiuTree(parent, D.r, log_factors)
else:
clt = self.clt
parent = clt.parent
log_factors = clt.log_factors
prev = clt.penalty(D.C, D.epsilon)
for L in range(tries):
if np.isclose(prev, 0):
break
# parent: list, D: Dataset, alpha: float, lambda_: float
clt.log_factors = fit_grad_parameters(parent, D, alpha, (10 ** L), clt.log_factors)
current = clt.penalty(D.C, D.epsilon)
if not (current < prev):
break
prev = current
self.clt = clt
return self
def format_influences(C, names):
return [
f"{names[j]} ≺ᴹ⁺ {names[i]}"
if C[i, j] == +1
else f"{names[j]} ≺ᴹ⁻ {names[i]}"
for i, j in zip(*np.nonzero(C))
]