-
Notifications
You must be signed in to change notification settings - Fork 7
/
train.py
439 lines (376 loc) · 24 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
# -*- coding: utf-8 -*-
#
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# Using this computer program means that you agree to the terms
# in the LICENSE file included with this software distribution.
# Any use not explicitly granted by the LICENSE is prohibited.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# For commercial licensing contact, please contact ps-license@tuebingen.mpg.de
from arguments import config_parser
import os
import numpy as np
from pathlib import Path
from gpytoolbox import remesh_botsch
import torch
from tqdm import tqdm
from flame.FLAME import FLAME
from flare.dataset import *
from flare.dataset import dataset_util
from flare.core import (
Mesh, Renderer
)
from flare.losses import *
from flare.modules import (
NeuralShader, get_deformer_network, Displacement
)
from flare.utils import (
AABB, read_mesh, write_mesh,
visualize_training,
make_dirs, set_defaults_finetune
)
import nvdiffrec.render.light as light
from test import run, quantitative_eval
import time
def main(args, device, dataset_train, dataloader_train, debug_views, FLAMEServer):
## ============== Dir ==============================
run_name = args.run_name if args.run_name is not None else args.input_dir.parent.name
images_save_path, images_eval_save_path, meshes_save_path, shaders_save_path, experiment_dir = make_dirs(args, run_name, args.finetune_color)
## ============== load mesh/train mesh ==============================
if args.finetune_color:
mesh_path = experiment_dir / "stage_1" / "meshes" / f"mesh_latest.obj"
print("loading mesh from:", mesh_path)
flame_canonical_mesh = read_mesh(mesh_path, device=device)
flame_canonical_mesh.compute_connectivity()
flame_canonical_mesh.to(device)
else:
if args.downsample:
v_down, f_down = remesh_botsch(FLAMEServer.canonical_verts.squeeze(0).cpu().detach().numpy().astype(np.float64),
FLAMEServer.faces_tensor.cpu().numpy().astype(np.int32), h=float(args.downsample_ratio))
verts = np.ascontiguousarray(v_down)
faces = np.ascontiguousarray(f_down)
print("Downsampled:", verts.shape, faces.shape)
else:
verts = FLAMEServer.canonical_verts.squeeze(0)
faces = FLAMEServer.faces_tensor
flame_canonical_mesh: Mesh = None
flame_canonical_mesh = Mesh(verts, faces, device=device)
flame_canonical_mesh.compute_connectivity()
write_mesh(Path(meshes_save_path / "init_mesh.obj"), flame_canonical_mesh.to('cpu'))
## ============== renderer ==============================
aabb = AABB(flame_canonical_mesh.vertices.cpu().numpy())
flame_mesh_aabb = [torch.min(flame_canonical_mesh.vertices, dim=0).values, torch.max(flame_canonical_mesh.vertices, dim=0).values]
renderer = Renderer(device=device)
renderer.set_near_far(dataset_train, torch.from_numpy(aabb.corners).to(device), epsilon=0.5)
channels_gbuffer = ['mask', 'position', 'normal', "canonical_position"]
print("Rasterizing:", channels_gbuffer)
renderer_visualization = Renderer(device=device)
renderer_visualization.set_near_far(dataset_train, torch.from_numpy(aabb.corners).to(device), epsilon=0.5)
# ==============================================================================================
# vertices
# ==============================================================================================
lr_vertices = args.lr_vertices
displacements = Displacement(vertices_shape=flame_canonical_mesh.vertices.shape)
displacements.to(device=device)
optimizer_vertices = torch.optim.Adam(list(displacements.parameters()), lr=lr_vertices)
# ==============================================================================================
# deformation
# ==============================================================================================
if args.train_deformer:
model_path = None
print("=="*50)
print("Training Deformer")
else:
print("=="*50)
print("Loading deformer network trained in the previous stage")
args.weight_flame_regularization = 0.0
model_path = Path(experiment_dir / "stage_1" / "network_weights" / f"deformer_latest.pt")
assert os.path.exists(model_path)
deformer_net = get_deformer_network(FLAMEServer, model_path=model_path, train=args.train_deformer, d_in=3, dims=args.deform_dims,
weight_norm=True, multires=0, num_exp=50, aabb=flame_mesh_aabb, ghostbone=args.ghostbone, device=device)
if args.train_deformer:
optimizer_deformer = torch.optim.Adam(list(deformer_net.parameters()), lr=args.lr_deformer)
# ==============================================================================================
# shading
# ==============================================================================================
lgt = light.create_env_rnd()
disentangle_network_params = {
"material_mlp_ch": args.material_mlp_ch,
"light_mlp_ch":args.light_mlp_ch,
"material_mlp_dims":args.material_mlp_dims,
"light_mlp_dims":args.light_mlp_dims
}
# Create the optimizer for the neural shader
shader = NeuralShader(fourier_features=args.fourier_features,
activation=args.activation,
last_activation=torch.nn.Sigmoid(),
disentangle_network_params=disentangle_network_params,
bsdf=args.bsdf,
aabb=flame_mesh_aabb,
device=device)
params = list(shader.parameters())
if args.weight_albedo_regularization > 0:
from robust_loss_pytorch.adaptive import AdaptiveLossFunction
_adaptive = AdaptiveLossFunction(num_dims=4, float_dtype=np.float32, device=device)
params += list(_adaptive.parameters()) ## need to train it
optimizer_shader = torch.optim.Adam(params, lr=args.lr_shader)
# ==============================================================================================
# Loss Functions
# ==============================================================================================
# Initialize the loss weights and losses
loss_weights = {
"mask": args.weight_mask,
"normal": args.weight_normal,
"laplacian": args.weight_laplacian,
"shading": args.weight_shading,
"perceptual_loss": args.weight_perceptual_loss,
"albedo_regularization": args.weight_albedo_regularization,
"roughness_regularization": args.weight_roughness_regularization,
"white_light_regularization": args.weight_white_lgt_regularization,
"fresnel_coeff": args.weight_fresnel_coeff
}
if args.train_deformer:
loss_weights["flame_regularization"] = 1.0 # we use the weight directly in loss function
else:
loss_weights["flame_regularization"] = 0.0
losses = {k: torch.tensor(0.0, device=device) for k in loss_weights}
print(loss_weights)
if loss_weights["perceptual_loss"] > 0.0:
VGGloss = VGGPerceptualLoss().to(device)
print("=="*50)
shader.train()
if args.train_deformer:
deformer_net.train()
displacements.train()
print("Batch Size:", args.batch_size)
print("=="*50)
# ==============================================================================================
# T R A I N I N G
# ==============================================================================================
epochs = (args.iterations // len(dataloader_train)) + 1
iteration = 0
progress_bar = tqdm(range(epochs))
start = time.time()
for epoch in progress_bar:
for iter_, views_subset in enumerate(dataloader_train):
iteration += 1
progress_bar.set_description(desc=f'Epoch {epoch}, Iter {iteration}')
# ==============================================================================================
# upsample + remesh + reduce lr + freeze if required
# ==============================================================================================
if iteration in args.upsample_iterations and not args.finetune_color:
print("=="*50)
print("Upsampling at iteration:", iteration)
# Upsample the mesh by remeshing the surface with half the average edge length
e0, e1 = mesh.edges.unbind(1)
average_edge_length = torch.linalg.norm(canonical_offset_vertices[e0] - canonical_offset_vertices[e1], dim=-1).mean()
v_upsampled, f_upsampled = remesh_botsch(canonical_offset_vertices.cpu().detach().numpy().astype(np.float64),
mesh.indices.cpu().numpy().astype(np.int32), h=float(average_edge_length/1.5))
v_upsampled = np.ascontiguousarray(v_upsampled)
f_upsampled = np.ascontiguousarray(f_upsampled)
flame_canonical_mesh = Mesh(v_upsampled, f_upsampled, device=device)
flame_canonical_mesh.compute_connectivity()
print("Vertices:", v_upsampled.shape)
print("Faces:", f_upsampled.shape)
del v_upsampled, f_upsampled
if iteration == args.upsample_iterations[0]:
lr_vertices *= 0.75
# Adjust weights and step size
loss_weights['laplacian'] *= 4
loss_weights['normal'] *= 4
print("laplacian weight", loss_weights['laplacian'])
print("normal consistency weight", loss_weights['normal'])
print("lr vertices", lr_vertices)
displacements.register_parameter('vertex_offsets', torch.nn.Parameter(torch.zeros(flame_canonical_mesh.vertices.shape), requires_grad=True))
displacements.canonical_vertices = flame_canonical_mesh.vertices
displacements.vertices_shape = flame_canonical_mesh.vertices.shape
displacements.to(device=device)
optimizer_vertices = torch.optim.Adam(list(displacements.parameters()), lr=lr_vertices)
print("=="*50)
# ==============================================================================================
# update/displace vertices
# ==============================================================================================
v_off = displacements()
canonical_offset_vertices = flame_canonical_mesh.vertices + v_off
mesh = flame_canonical_mesh.with_vertices(canonical_offset_vertices)
# ==============================================================================================
# deformation of canonical mesh
# ==============================================================================================
shapedirs, posedirs, lbs_weights = deformer_net.query_weights(mesh.vertices)
batched_verts = mesh.vertices.unsqueeze(0).repeat(args.batch_size, 1, 1)
_, pose_features, transformations = FLAMEServer(expression_params=views_subset["flame_expression"], full_pose=views_subset["flame_pose"])
if args.ghostbone:
transformations = torch.cat([torch.eye(4).unsqueeze(0).unsqueeze(0).expand(args.batch_size, -1, -1, -1).float().to(device), transformations], 1)
deformed_vertices = FLAMEServer.forward_pts_batch(pnts_c=batched_verts, betas=views_subset["flame_expression"], transformations=transformations, pose_feature=pose_features,
shapedirs=shapedirs, posedirs=posedirs, lbs_weights=lbs_weights, dtype=torch.float32, map2_flame_original=True)
d_normals = mesh.fetch_all_normals(deformed_vertices, mesh)
# ==============================================================================================
# R A S T E R I Z A T I O N
# ==============================================================================================
gbuffers = renderer.render_batch(views_subset['camera'], deformed_vertices.contiguous(), d_normals,
channels=channels_gbuffer, with_antialiasing=True,
canonical_v=mesh.vertices, canonical_idx=mesh.indices)
# ==============================================================================================
# loss function
# ==============================================================================================
## ============== geometry regularization ==============================
losses['normal'] = normal_consistency_loss(mesh)
losses['laplacian'] = laplacian_loss(mesh)
## ============== color + regularization for color ==============================
pred_color_masked, cbuffers, gbuffer_mask = shader.shade(gbuffers, views_subset, mesh, args.finetune_color, lgt)
losses['shading'], pred_color, tonemapped_colors = shading_loss_batch(pred_color_masked, views_subset, args.batch_size)
losses['perceptual_loss'] = VGGloss(tonemapped_colors[0], tonemapped_colors[1], iteration)
losses['mask'] = mask_loss(views_subset["mask"], gbuffer_mask)
## ======= regularization color ========
losses['albedo_regularization'] = albedo_regularization(_adaptive, shader, mesh, device, displacements, iteration)
losses['white_light_regularization'] = white_light(cbuffers)
losses['roughness_regularization'] = roughness_regularization(cbuffers["roughness"], views_subset["skin_mask"], views_subset["mask"], r_mean=args.r_mean)
losses["fresnel_coeff"] = spec_intensity_regularization(cbuffers["ko"], views_subset["skin_mask"], views_subset["mask"])
## ============== flame regularization ==============================
if loss_weights['flame_regularization'] > 0:
losses['flame_regularization'], gt_nn = flame_regularization(FLAMEServer, lbs_weights, shapedirs, posedirs, mesh.vertices, args.ghostbone,
iteration, args.flame_mask, views_subset=views_subset, gbuffer=gbuffers,
weight_lbs=args.weight_flame_regularization)
if iteration in args.decay_flame:
print("Decaying flame regularization")
loss_weights['flame_regularization'] *= 0.5
loss = torch.tensor(0., device=device)
for k, v in losses.items():
loss += v * loss_weights[k]
# ==============================================================================================
# Optimizer step
# ==============================================================================================
optimizer_shader.zero_grad()
optimizer_vertices.zero_grad()
if args.train_deformer:
optimizer_deformer.zero_grad()
loss.backward()
torch.cuda.synchronize()
### increase the gradients of positional encoding following tinycudnn
if args.grad_scale and args.fourier_features == "hashgrid":
shader.fourier_feature_transform.params.grad /= 8.0
optimizer_shader.step()
optimizer_vertices.step()
if args.train_deformer:
optimizer_deformer.step()
progress_bar.set_postfix({'loss': loss.detach().cpu().item()})
# ==============================================================================================
# warning: check if light mlp diverged
# ==============================================================================================
'''
We do not use an activation function for the output layer of light MLP because we are learning in sRGB space where the values
are not restricted between 0 and 1. As a result, the light MLP diverges sometimes and predicts only zero values.
Hence, we have included the try and catch block to automatically restart the training during this case.
'''
if iteration == 100:
convert_uint = lambda x: torch.from_numpy(np.clip(np.rint(dataset_util.rgb_to_srgb(x).detach().cpu().numpy() * 255.0), 0, 255).astype(np.uint8)).to(device)
try:
diffuse_shading = convert_uint(cbuffers["shading"])
specular_shading = convert_uint(cbuffers["specu"])
if torch.count_nonzero(diffuse_shading) == 0 or torch.count_nonzero(specular_shading) == 0:
raise ValueError("All values predicted from light MLP are zero")
except ValueError as e:
print(f"Error: {e}")
raise # Raise the exception to exit the current execution of main()
# ==============================================================================================
# V I S U A L I Z A T I O N S
# ==============================================================================================
if (args.visualization_frequency > 0) and (iteration == 1 or iteration % args.visualization_frequency == 0):
with torch.no_grad():
debug_rgb_pred, debug_gbuffer, debug_cbuffers = run(args, mesh, debug_views, FLAMEServer, deformer_net, shader, renderer, device, channels_gbuffer, lgt)
## ============== visualize ==============================
visualize_training(debug_rgb_pred, debug_cbuffers, debug_gbuffer, debug_views, images_save_path, iteration)
del debug_gbuffer, debug_cbuffers
## ============== save intermediate ==============================
if (args.save_frequency > 0) and (iteration == 1 or iteration % args.save_frequency == 0):
with torch.no_grad():
write_mesh(meshes_save_path / f"mesh_{iteration:06d}.obj", mesh.detach().to('cpu'))
shader.save(shaders_save_path / f'shader_{iteration:06d}.pt')
displacements.save(shaders_save_path / f'displacement_{iteration:06d}.pt')
deformer_net.save(shaders_save_path / f'deformer_{iteration:06d}.pt')
end = time.time()
total_time = ((end - start) % 3600)
print("TIME TAKEN (mins):", int(total_time // 60))
# ==============================================================================================
# s a v e
# ==============================================================================================
with open(experiment_dir / "args.txt", "w") as text_file:
print(f"{args}", file=text_file)
write_mesh(meshes_save_path / f"mesh_latest.obj", mesh.detach().to('cpu'))
shader.save(shaders_save_path / f'shader_latest.pt')
displacements.save(shaders_save_path / f'displacement_latest.pt')
deformer_net.save(shaders_save_path / f'deformer_latest.pt')
# ==============================================================================================
# FINAL: qualitative and quantitative results
# ==============================================================================================
if args.finetune_color:
## ============== free memory before evaluation ==============================
del dataset_train, dataloader_train, debug_views, views_subset
print("=="*50)
print("E V A L U A T I O N")
print("=="*50)
dataset_val = DatasetLoader(args, train_dir=args.eval_dir, sample_ratio=1, pre_load=True)
dataloader_validate = torch.utils.data.DataLoader(dataset_val, batch_size=4, collate_fn=dataset_val.collate)
quantitative_eval(args, mesh, dataloader_validate, FLAMEServer, deformer_net, shader, renderer, device, channels_gbuffer, experiment_dir
, images_eval_save_path / "qualitative_results", lgt=lgt, save_each=True)
if __name__ == '__main__':
parser = config_parser()
args = parser.parse_args()
# Select the device
device = torch.device('cpu')
if torch.cuda.is_available() and args.device >= 0:
device = torch.device(f'cuda:{args.device}')
print(f"Using device {device}")
# ==============================================================================================
# load data
# ==============================================================================================
print("loading train views...")
dataset_train = DatasetLoader(args, train_dir=args.train_dir, sample_ratio=args.sample_idx_ratio, pre_load=True)
dataset_val = DatasetLoader(args, train_dir=args.eval_dir, sample_ratio=24, pre_load=True)
dataloader_train = torch.utils.data.DataLoader(dataset_train, batch_size=args.batch_size, collate_fn=dataset_train.collate, shuffle=True, drop_last=True)
view_indices = np.array(args.visualization_views).astype(int)
d_l = [dataset_val.__getitem__(idx) for idx in view_indices[2:]]
d_l.append(dataset_train.__getitem__(view_indices[0]))
d_l.append(dataset_train.__getitem__(view_indices[1]))
debug_views = dataset_val.collate(d_l)
del dataset_val
# ==============================================================================================
# Create trainables: FLAME + Renderer + Downsample
# ==============================================================================================
### ============== load FLAME mesh ==============================
flame_path = args.working_dir / 'flame/FLAME2020/generic_model.pkl'
flame_shape = dataset_train.shape_params
FLAMEServer = FLAME(flame_path, n_shape=100, n_exp=50, shape_params=flame_shape).to(device)
## ============== canonical with mouth open (jaw pose 0.4) ==============================
FLAMEServer.canonical_exp = (dataset_train.get_mean_expression()).to(device)
FLAMEServer.canonical_pose = FLAMEServer.canonical_pose.to(device)
FLAMEServer.canonical_verts, FLAMEServer.canonical_pose_feature, FLAMEServer.canonical_transformations = \
FLAMEServer(expression_params=FLAMEServer.canonical_exp, full_pose=FLAMEServer.canonical_pose)
if args.ghostbone:
FLAMEServer.canonical_transformations = torch.cat([torch.eye(4).unsqueeze(0).unsqueeze(0).float().to(device), FLAMEServer.canonical_transformations], 1)
FLAMEServer.canonical_verts = FLAMEServer.canonical_verts.to(device)
# ==============================================================================================
# main run
# ==============================================================================================
while True:
try:
main(args, device, dataset_train, dataloader_train, debug_views, FLAMEServer)
break # Exit the loop if main() runs successfully
except:
print("--"*50)
print("Warning: Re-initializing main() because the training of light MLP diverged and all the values are zero. If the training does not restart, please end it and restart. ")
print("--"*50)
### ============== defaults: fine tune color ==============================
set_defaults_finetune(args)
while True:
try:
main(args, device, dataset_train, dataloader_train, debug_views, FLAMEServer)
break # Exit the loop if main() runs successfully
except:
print("--"*50)
print("Warning: Re-initializing main() because the training of light MLP diverged and all the values are zero. If the training does not restart, please end it and restart. ")
print("--"*50)