-
Notifications
You must be signed in to change notification settings - Fork 246
/
std_ersp.m
370 lines (349 loc) · 17.5 KB
/
std_ersp.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
% STD_ERSP - Compute ERSP and/or ITC transforms for ICA components
% or data channels of a dataset. Save results into Matlab
% float files.
%
% Function description:
% The function computes the mean ERSP or ITC for the selected
% dataset ICA components or data channels in the requested
% frequency range and time window (the two are dependent).
% Frequencies are equally log spaced. Options specify component
% numbers, desired frequency range, time window length,
% frequency resolution, significance level, and wavelet
% cycles. See >> help newtimef and >> timef details
%
% Two Matlab files are saved (for ERSP and ITC). These contain
% the ERSP|ITC image, plus the transform parameters
% used to compute them. Saves the computed dataset mean images
% in dataset-name files with extensions '.icaersp' and '.icaitc'
% for ICA components or '.datersp', '.datitc' for data channels.
% Usage:
% >> [X times logfreqs ] = std_ersp(EEG, 'key', 'val', ...);
% Inputs:
% EEG - a loaded epoched EEG dataset structure. May be an array
% of such structure containing several datasets.
%
% Other inputs:
% 'trialindices' - [cell array] indices of trials for each dataset.
% Default is EMPTY (no trials). NEEDS TO BE SET.
% 'components' - [numeric vector] components of the EEG structure for which
% activation spectrum will be computed. Note that because
% computation of ERP is so fast, all components spectrum are
% computed and saved. Only selected component
% are returned by the function to Matlab
% {default|[] -> all}
% 'channels' - [cell array] channels of the EEG structure for which
% activation spectrum will be computed. Note that because
% computation of ERP is so fast, all channels spectrum are
% computed and saved. Only selected channels
% are returned by the function to Matlab
% {default|[] -> none}
% 'recompute' - ['on'|'off'] force recomputing data file even if it is
% already on disk.
% 'rmcomps' - [integer array] remove artifactual components (this entry
% is ignored when plotting components). This entry contains
% the indices of the components to be removed. Default is none.
% 'interp' - [struct] channel location structure containing electrode
% to interpolate ((this entry is ignored when plotting
% components). Default is no interpolation.
% 'fileout' - [string] name of the file to save on disk. The default
% is the same name (with a different extension) as the
% dataset given as input.
% 'savetrials' - ['on'|'off'] save single-trials ERSP. Requires a lot of disk
% space (dataset space on disk times 10) but allow for refined
% single-trial statistics. This option is obsolete as
% trials are now always saved.
% 'savefile' - ['on'|'off'] save file or simply return measures.
% Default is to save files ('on').
% 'getparams' - ['on'|'off'] return optional parameters for the newtimef
% function (and do not compute anything). This argument is
% obsolete (default is 'off').
%
% ERSP optional inputs:
% 'type' - ['ersp'|'itc'|'ersp&itc'] save ERSP, ITC, or both data
% types to disk {default: 'ersp'}
% 'freqs' - [minHz maxHz] the ERSP/ITC frequency range to compute
% and return. {default: 3 to EEG sampling rate divided by 3}
% 'timelimits' - [minms maxms] time window (in ms) to compute.
% {default: whole input epoch}.
% 'cycles' - [wavecycles (factor)]. If 0 -> DFT (constant window length
% across frequencies).
% If >0 -> the number of cycles in each analysis wavelet.
% If [wavecycles factor], wavelet cycles increase with
% frequency, beginning at wavecyles. (0 < factor < 1)
% factor = 0 -> fixed epoch length (DFT, as in FFT).
% factor = 1 -> no increase (standard wavelets)
% {default: [0]}
% 'padratio' - (power of 2). Multiply the number of output frequencies
% by dividing their frequency spacing through 0-padding.
% Output frequency spacing is (low_freq/padratio).
% 'alpha' - If in (0, 1), compute two-tailed permutation-based
% probability thresholds and use these to mask the output
% ERSP/ITC images {default: NaN}
% 'powbase' - Deprecated. Note that baseline can be readjusted after
% computation as single trial spectral decompositions are stored.
%
% Other optional inputs:
% This function will take any of the NEWTIMEF optional inputs (for instance
% to compute log-space frequencies)...
%
% Outputs:
% X - the masked log ERSP/ITC of the requested ICA components/channels
% in the selected frequency and time range. Note that for
% optimization reasons, this parameter is now empty or 0. X
% thus must be read from the datafile saved on disk.
% times - vector of time points for which the ERSPs/ITCs were computed.
% logfreqs - vector of (equally log spaced) frequencies (in Hz) at which the
% log ERSP/ITC was evaluated.
% parameters - parameters given as input to the newtimef function.
%
% Files written or modified:
% [dataset_filename].icaersp <-- saved component ERSPs
% [dataset_filename].icaitc <-- saved component ITCs
% [dataset_filename].icatimef <-- saved component single
% trial decompositions.
% OR for channels
% [dataset_filename].datersp <-- saved channel ERSPs
% [dataset_filename].datitc <-- saved channel ITCs
% [dataset_filename].dattimef <-- saved channel single
% trial decompositions.
% Example:
% % Create mean ERSP and ITC images on disk for all comps from
% % dataset EEG use three-cycle wavelets (at 3 Hz) to more than
% % three-cycle wavelets at 50 Hz. See >> help newtimef
% % Return the (equally log-freq spaced, probability-masked) ERSP.
% >> [Xersp, times, logfreqs] = std_ersp(EEG, ...
% 'type', 'ersp', 'freqs', [3 50], 'cycles', [3 0.5]);
%
% See also: NEWTIMEF, STD_ERP, STD_SPEC, STD_TOPO, STD_PRECLUST
%
% Authors: Arnaud Delorme, Hilit Serby, SCCN, INC, UCSD, January, 2005-
% Copyright (C) Arnaud Delorme, SCCN, INC, UCSD, October 11, 2004, arno@sccn.ucsd.edu
%
% This file is part of EEGLAB, see http://www.eeglab.org
% for the documentation and details.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
function [X, times, logfreqs, parameters] = std_ersp(EEG, varargin)
if nargin < 1
help std_ersp;
return;
end
X = [];
options = {};
if length(varargin) > 1
if ~ischar(varargin{1})
if length(varargin) > 0, options = { options{:} 'components' varargin{1} }; end
if length(varargin) > 1, options = { options{:} 'freqs' varargin{2} }; end
if length(varargin) > 2, options = { options{:} 'timewindow' varargin{3} }; end
if length(varargin) > 3, options = { options{:} 'cycles' varargin{4} }; end
if length(varargin) > 4, options = { options{:} 'padratio' varargin{5} }; end
if length(varargin) > 5, options = { options{:} 'alpha' varargin{6} }; end
if length(varargin) > 6, options = { options{:} 'type' varargin{7} }; end
if length(varargin) > 7, options = { options{:} 'powbase' varargin{8} }; end
else
options = varargin;
end
end
[g, timefargs] = finputcheck(options, { ...
'components' 'integer' [] [];
'channels' { 'cell','integer' } { [] [] } {};
'powbase' 'real' [] [];
'trialindices' { 'integer','cell' } [] [];
'savetrials' 'string' { 'on','off' } 'off';
'plot' 'string' { 'on','off' } 'off';
'recompute' 'string' { 'on','off' } 'off';
'getparams' 'string' { 'on','off' } 'off';
'savefile' 'string' { 'on','off' } 'on';
'parallel' 'string' { 'on','off' } 'off';
'timewindow', 'real', [], [];
'fileout', 'string', [], '';
'timelimits' 'real' [] [EEG(1).xmin EEG(1).xmax]*1000;
'cycles' 'real' [] [3 .5];
'padratio' 'real' [] 1;
'trialinfo' 'struct' [] struct([]);
'freqs' 'real' [] [0 EEG(1).srate/2];
'rmcomps' 'cell' [] cell(1,length(EEG));
'interp' 'struct' { } struct([]);
'freqscale' 'string' [] 'log';
'alpha' 'real' [] NaN;
'baseline' 'real' [] 0;
'type' 'string' { 'ersp','itc','both','ersp&itc' } 'both'}, 'std_ersp', 'ignore');
if ischar(g), error(g); end
if isempty(g.trialindices), g.trialindices = cell(length(EEG)); end
if ~iscell(g.trialindices), g.trialindices = { g.trialindices }; end
if ~isempty(g.powbase), disp('''powbase'' parameter is no longer supported at computation time'); end
% checking input parameters
% -------------------------
if isempty(g.components) && isempty(g.channels)
if isempty(EEG(1).icaweights)
error('EEG.icaweights not found');
end
g.components = 1:size(EEG(1).icaweights,1);
disp('Computing ERSP with default values for all components of the dataset');
end
% select ICA components or data channels
% --------------------------------------
if isempty(g.fileout), g.fileout = fullfile(EEG(1).filepath, EEG(1).filename(1:end-4)); end
if ~isempty(g.components)
g.indices = g.components;
prefix = 'comp';
filenameersp = [ g.fileout '.icaersp' ];
filenameitc = [ g.fileout '.icaitc' ];
filenametrials = [ g.fileout '.icatimef' ];
if ~isempty(g.channels)
error('Cannot compute ERSP/ITC for components and channels at the same time');
end
elseif ~isempty(g.channels)
if iscell(g.channels)
if ~isempty(g.interp)
g.indices = eeg_chaninds(g.interp, g.channels, 0);
else
g.indices = eeg_chaninds(EEG(1), g.channels, 0);
for ind = 2:length(EEG)
if ~isequal(eeg_chaninds(EEG(ind), g.channels, 0), g.indices)
error([ 'Channel information must be consistent when ' 10 'several datasets are merged for a specific design' ]);
end
end
end
else
g.indices = g.channels;
end
prefix = 'chan';
filenameersp = [ g.fileout '.datersp' ];
filenameitc = [ g.fileout '.datitc' ];
filenametrials = [ g.fileout '.dattimef' ];
end
% Check if ERSP/ITC information found in datasets and if fits requested parameters
% ----------------------------------------------------------------------------
if exist( filenametrials ) && strcmpi(g.recompute, 'off')
fprintf('Use existing file for ERSP: %s; check the ''recompute checkbox'' to force recomputing.\n', filenameersp);
return;
end
% Compute ERSP parameters
% -----------------------
parameters = { 'cycles', g.cycles, 'padratio', g.padratio, ...
'alpha', g.alpha, 'freqscale', g.freqscale, timefargs{:} };
defaultlowfreq = 3;
[time_range] = compute_ersp_times(g.cycles, EEG(1).srate, ...
[EEG(1).xmin EEG(1).xmax]*1000 , defaultlowfreq, g.padratio);
if time_range(1) < time_range(2) && g.freqs(1) == 0
g.freqs(1) = defaultlowfreq; % for backward compatibility
end
parameters = { parameters{:} 'freqs' g.freqs };
if strcmpi(g.plot, 'off')
parameters = { parameters{:} 'plotersp', 'off', 'plotitc', 'off', 'plotphase', 'off' };
end
parameters{end+1} = 'baseline';
parameters{end+1} = g.baseline;
% return parameters
% -----------------
if strcmpi(g.getparams, 'on')
X = []; times = []; logfreqs = [];
if strcmpi(g.savetrials, 'on')
parameters = { parameters{:} 'savetrials', g.savetrials };
end
return;
end
options = {};
if ~isempty(g.rmcomps), options = { options{:} 'rmcomps' g.rmcomps }; end
if ~isempty(g.interp), options = { options{:} 'interp' g.interp }; end
if isempty(g.channels)
X = eeg_getdatact(EEG, 'component', g.indices, 'trialindices', g.trialindices );
else X = eeg_getdatact(EEG, 'channel' , g.indices, 'trialindices', g.trialindices, 'rmcomps', g.rmcomps, 'interp', g.interp);
end
if size(X, 3) == 1
error('The data is continuous for one of the dataset. ERSP can only be computed when data trials are present');
end
% frame range
% -----------
pointrange1 = round(max((g.timelimits(1)/1000-EEG(1).xmin)*EEG(1).srate, 1));
pointrange2 = round(min(((g.timelimits(2)+1000/EEG(1).srate)/1000-EEG(1).xmin)*EEG(1).srate, EEG(1).pnts));
pointrange = [pointrange1:pointrange2];
% Compute ERSP && ITC
% ------------------
allTrialsTmp = cell(1,length(g.indices));
allTrialsTime = cell(1,length(g.indices));
allTrialsFreqs = cell(1,length(g.indices));
eeglab_options;
usesingle = option_single;
disp('Computing time/frequency decomposition...');
parfor k = 1:length(g.indices)
tmpparams = parameters;
if length(g.indices) > 1
tmpparams{end+1} = 'verbose';
tmpparams{end+1} = 'off';
end
% Run timef() to get ERSP
% ------------------------
timefdata = reshape(X(k,pointrange,:), 1, length(pointrange)*size(X,3));
mytimes = [];
mylogfreqs = [];
alltfX = [];
if ~isempty(timefdata)
[logersp,logitc,logbase,mytimes,mylogfreqs,logeboot,logiboot,alltfX] ...
= newtimef( timefdata, length(pointrange), g.timelimits, EEG(1).srate, tmpparams{2:end});
%figure; newtimef( TMP.data(32,:), EEG.pnts, [EEG.xmin EEG.xmax]*1000, EEG.srate, cycles, 'freqs', freqs);
%figure; newtimef( timefdata, length(pointrange), g.timelimits, EEG.srate, cycles, 'freqs', freqs);
end
%if strcmpi(g.plot, 'on'), return; end
if usesingle
alltfX = single(alltfX);
end
allTrialsTmp{k} = single( alltfX );
allTrialsTime{k} = mytimes;
allTrialsFreqs{k} = mylogfreqs;
end
all_trials = [];
for k = 1:length(g.indices) % for each (specified) component/channel
all_trials = setfield( all_trials, [ prefix int2str(g.indices(k)) ], allTrialsTmp{k});
end
X = allTrialsTmp{1};
% Save ERSP into file
% -------------------
logfreqs = allTrialsFreqs{1};
times = allTrialsTime{1};
all_trials.freqs = allTrialsFreqs{1};
all_trials.times = allTrialsTime{1};
all_trials.parameters = { options{:} parameters{:} };
all_trials.datatype = 'TIMEF';
all_trials.datafiles = computeFullFileName( { EEG.filepath }, { EEG.filename });
all_trials.datatrials = g.trialindices;
all_trials.parameters = parameters;
if ~isempty(g.channels)
if ~isempty(g.interp)
all_trials.labels = { g.interp(g.indices).labels };
elseif ~isempty(EEG(1).chanlocs)
tmpchanlocs = EEG(1).chanlocs;
all_trials.labels = { tmpchanlocs(g.indices).labels };
end
end
all_trials.trialinfo = g.trialinfo;
if strcmpi(g.savefile, 'on')
std_savedat( filenametrials , all_trials );
end
% compute full file names
% -----------------------
function res = computeFullFileName(filePaths, fileNames);
for index = 1:length(fileNames)
res{index} = fullfile(filePaths{index}, fileNames{index});
end