-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathwae_gan.py
236 lines (182 loc) · 7.33 KB
/
wae_gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import argparse
import torch
import os
import torch.nn as nn
import torch.optim as optim
from tqdm import tqdm
from torch.utils.data import DataLoader
from torch.autograd import Variable
from torchvision.datasets import MNIST
from torchvision.transforms import transforms
from torchvision.utils import save_image
from torch.optim.lr_scheduler import StepLR
torch.manual_seed(123)
parser = argparse.ArgumentParser(description='PyTorch MNIST WAE-GAN')
parser.add_argument('-batch_size', type=int, default=100, metavar='N', help='input batch size for training (default: 100)')
parser.add_argument('-epochs', type=int, default=100, help='number of epochs to train (default: 100)')
parser.add_argument('-lr', type=float, default=0.0001, help='learning rate (default: 0.0001)')
parser.add_argument('-dim_h', type=int, default=128, help='hidden dimension (default: 128)')
parser.add_argument('-n_z', type=int, default=8, help='hidden dimension of z (default: 8)')
parser.add_argument('-LAMBDA', type=float, default=10, help='regularization coef MMD term (default: 10)')
parser.add_argument('-n_channel', type=int, default=1, help='input channels (default: 1)')
parser.add_argument('-sigma', type=float, default=1, help='variance of hidden dimension (default: 1)')
args = parser.parse_args()
trainset = MNIST(root='./data/',
train=True,
transform=transforms.ToTensor(),
download=True)
testset = MNIST(root='./data/',
train=False,
transform=transforms.ToTensor(),
download=True)
train_loader = DataLoader(dataset=trainset,
batch_size=args.batch_size,
shuffle=True)
test_loader = DataLoader(dataset=testset,
batch_size=104,
shuffle=False)
def free_params(module: nn.Module):
for p in module.parameters():
p.requires_grad = True
def frozen_params(module: nn.Module):
for p in module.parameters():
p.requires_grad = False
class Encoder(nn.Module):
def __init__(self, args):
super(Encoder, self).__init__()
self.n_channel = args.n_channel
self.dim_h = args.dim_h
self.n_z = args.n_z
self.main = nn.Sequential(
nn.Conv2d(self.n_channel, self.dim_h, 4, 2, 1, bias=False),
nn.ReLU(True),
nn.Conv2d(self.dim_h, self.dim_h * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(self.dim_h * 2),
nn.ReLU(True),
nn.Conv2d(self.dim_h * 2, self.dim_h * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(self.dim_h * 4),
nn.ReLU(True),
nn.Conv2d(self.dim_h * 4, self.dim_h * 8, 4, 2, 1, bias=False),
nn.BatchNorm2d(self.dim_h * 8),
nn.ReLU(True),
)
self.fc = nn.Linear(self.dim_h * (2 ** 3), self.n_z)
def forward(self, x):
x = self.main(x)
x = x.squeeze()
x = self.fc(x)
return x
class Decoder(nn.Module):
def __init__(self, args):
super(Decoder, self).__init__()
self.n_channel = args.n_channel
self.dim_h = args.dim_h
self.n_z = args.n_z
self.proj = nn.Sequential(
nn.Linear(self.n_z, self.dim_h * 8 * 7 * 7),
nn.ReLU()
)
self.main = nn.Sequential(
nn.ConvTranspose2d(self.dim_h * 8, self.dim_h * 4, 4),
nn.BatchNorm2d(self.dim_h * 4),
nn.ReLU(True),
nn.ConvTranspose2d(self.dim_h * 4, self.dim_h * 2, 4),
nn.BatchNorm2d(self.dim_h * 2),
nn.ReLU(True),
nn.ConvTranspose2d(self.dim_h * 2, 1, 4, stride=2),
nn.Sigmoid()
)
def forward(self, x):
x = self.proj(x)
x = x.view(-1, self.dim_h * 8, 7, 7)
x = self.main(x)
return x
class Discriminator(nn.Module):
def __init__(self, args):
super(Discriminator, self).__init__()
self.n_channel = args.n_channel
self.dim_h = args.dim_h
self.n_z = args.n_z
self.main = nn.Sequential(
nn.Linear(self.n_z, self.dim_h * 4),
nn.ReLU(True),
nn.Linear(self.dim_h * 4, self.dim_h * 4),
nn.ReLU(True),
nn.Linear(self.dim_h * 4, self.dim_h * 4),
nn.ReLU(True),
nn.Linear(self.dim_h * 4, self.dim_h * 4),
nn.ReLU(True),
nn.Linear(self.dim_h * 4, 1),
nn.Sigmoid()
)
def forward(self, x):
x = self.main(x)
return x
encoder, decoder, discriminator = Encoder(args), Decoder(args), Discriminator(args)
criterion = nn.MSELoss()
encoder.train()
decoder.train()
discriminator.train()
# Optimizers
enc_optim = optim.Adam(encoder.parameters(), lr = args.lr)
dec_optim = optim.Adam(decoder.parameters(), lr = args.lr)
dis_optim = optim.Adam(discriminator.parameters(), lr = 0.5 * args.lr)
enc_scheduler = StepLR(enc_optim, step_size=30, gamma=0.5)
dec_scheduler = StepLR(dec_optim, step_size=30, gamma=0.5)
dis_scheduler = StepLR(dis_optim, step_size=30, gamma=0.5)
if torch.cuda.is_available():
encoder, decoder, discriminator = encoder.cuda(), decoder.cuda(), discriminator.cuda()
one = torch.Tensor([1])
mone = one * -1
if torch.cuda.is_available():
one = one.cuda()
mone = mone.cuda()
for epoch in range(args.epochs):
step = 0
for images, _ in tqdm(train_loader):
if torch.cuda.is_available():
images = images.cuda()
encoder.zero_grad()
decoder.zero_grad()
discriminator.zero_grad()
# ======== Train Discriminator ======== #
frozen_params(decoder)
frozen_params(encoder)
free_params(discriminator)
z_fake = torch.randn(images.size()[0], args.n_z) * args.sigma
if torch.cuda.is_available():
z_fake = z_fake.cuda()
d_fake = discriminator(z_fake)
z_real = encoder(images)
d_real = discriminator(z_real)
torch.log(d_fake).mean().backward(mone)
torch.log(1 - d_real).mean().backward(mone)
dis_optim.step()
# ======== Train Generator ======== #
free_params(decoder)
free_params(encoder)
frozen_params(discriminator)
batch_size = images.size()[0]
z_real = encoder(images)
x_recon = decoder(z_real)
d_real = discriminator(encoder(Variable(images.data)))
recon_loss = criterion(x_recon, images)
d_loss = args.LAMBDA * (torch.log(d_real)).mean()
recon_loss.backward(one)
d_loss.backward(mone)
enc_optim.step()
dec_optim.step()
step += 1
if (step + 1) % 300 == 0:
print("Epoch: [%d/%d], Step: [%d/%d], Reconstruction Loss: %.4f" %
(epoch + 1, args.epochs, step + 1, len(train_loader), recon_loss.data.item()))
if (epoch + 1) % 1 == 0:
batch_size = 104
test_iter = iter(test_loader)
test_data = next(test_iter)
z_real = encoder(Variable(test_data[0]).cuda())
reconst = decoder(torch.randn_like(z_real)).cpu().view(batch_size, 1, 28, 28)
if not os.path.isdir('./data/reconst_images'):
os.makedirs('data/reconst_images')
save_image(test_data[0].view(batch_size, 1, 28, 28), './data/reconst_images/wae_gan_input.png')
save_image(reconst.data, './data/reconst_images/wae_gan_images_%d.png' % (epoch + 1))