forked from norvig/paip-lisp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gps.lisp
261 lines (210 loc) · 8.45 KB
/
gps.lisp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
;;; -*- Mode: Lisp; Syntax: Common-Lisp; -*-
;;; Code from Paradigms of Artificial Intelligence Programming
;;; Copyright (c) 1991 Peter Norvig
;;;; File gps.lisp: Final version of GPS
(requires "gps1")
;;; ==============================
(defun executing-p (x)
"Is x of the form: (executing ...) ?"
(starts-with x 'executing))
(defun starts-with (list x)
"Is this a list whose first element is x?"
(and (consp list) (eql (first list) x)))
(defun convert-op (op)
"Make op conform to the (EXECUTING op) convention."
(unless (some #'executing-p (op-add-list op))
(push (list 'executing (op-action op)) (op-add-list op)))
op)
(defun op (action &key preconds add-list del-list)
"Make a new operator that obeys the (EXECUTING op) convention."
(convert-op
(make-op :action action :preconds preconds
:add-list add-list :del-list del-list)))
;;; ==============================
(mapc #'convert-op *school-ops*)
;;; ==============================
(defvar *ops* nil "A list of available operators.")
(defstruct op "An operation"
(action nil) (preconds nil) (add-list nil) (del-list nil))
(defun GPS (state goals &optional (*ops* *ops*))
"General Problem Solver: from state, achieve goals using *ops*."
(remove-if #'atom (achieve-all (cons '(start) state) goals nil)))
;;; ==============================
(defun achieve-all (state goals goal-stack)
"Achieve each goal, and make sure they still hold at the end."
(let ((current-state state))
(if (and (every #'(lambda (g)
(setf current-state
(achieve current-state g goal-stack)))
goals)
(subsetp goals current-state :test #'equal))
current-state)))
(defun achieve (state goal goal-stack)
"A goal is achieved if it already holds,
or if there is an appropriate op for it that is applicable."
(dbg-indent :gps (length goal-stack) "Goal: ~a" goal)
(cond ((member-equal goal state) state)
((member-equal goal goal-stack) nil)
(t (some #'(lambda (op) (apply-op state goal op goal-stack))
(find-all goal *ops* :test #'appropriate-p)))))
;;; ==============================
(defun member-equal (item list)
(member item list :test #'equal))
;;; ==============================
(defun apply-op (state goal op goal-stack)
"Return a new, transformed state if op is applicable."
(dbg-indent :gps (length goal-stack) "Consider: ~a" (op-action op))
(let ((state2 (achieve-all state (op-preconds op)
(cons goal goal-stack))))
(unless (null state2)
;; Return an updated state
(dbg-indent :gps (length goal-stack) "Action: ~a" (op-action op))
(append (remove-if #'(lambda (x)
(member-equal x (op-del-list op)))
state2)
(op-add-list op)))))
(defun appropriate-p (goal op)
"An op is appropriate to a goal if it is in its add list."
(member-equal goal (op-add-list op)))
;;; ==============================
(defun use (oplist)
"Use oplist as the default list of operators."
;; Return something useful, but not too verbose:
;; the number of operators.
(length (setf *ops* oplist)))
;;; ==============================
(defparameter *banana-ops*
(list
(op 'climb-on-chair
:preconds '(chair-at-middle-room at-middle-room on-floor)
:add-list '(at-bananas on-chair)
:del-list '(at-middle-room on-floor))
(op 'push-chair-from-door-to-middle-room
:preconds '(chair-at-door at-door)
:add-list '(chair-at-middle-room at-middle-room)
:del-list '(chair-at-door at-door))
(op 'walk-from-door-to-middle-room
:preconds '(at-door on-floor)
:add-list '(at-middle-room)
:del-list '(at-door))
(op 'grasp-bananas
:preconds '(at-bananas empty-handed)
:add-list '(has-bananas)
:del-list '(empty-handed))
(op 'drop-ball
:preconds '(has-ball)
:add-list '(empty-handed)
:del-list '(has-ball))
(op 'eat-bananas
:preconds '(has-bananas)
:add-list '(empty-handed not-hungry)
:del-list '(has-bananas hungry))))
;;; ==============================
(defun make-maze-ops (pair)
"Make maze ops in both directions"
(list (make-maze-op (first pair) (second pair))
(make-maze-op (second pair) (first pair))))
(defun make-maze-op (here there)
"Make an operator to move between two places"
(op `(move from ,here to ,there)
:preconds `((at ,here))
:add-list `((at ,there))
:del-list `((at ,here))))
(defparameter *maze-ops*
(mappend #'make-maze-ops
'((1 2) (2 3) (3 4) (4 9) (9 14) (9 8) (8 7) (7 12) (12 13)
(12 11) (11 6) (11 16) (16 17) (17 22) (21 22) (22 23)
(23 18) (23 24) (24 19) (19 20) (20 15) (15 10) (10 5) (20 25))))
;;; ==============================
(defun GPS (state goals &optional (*ops* *ops*))
"General Problem Solver: from state, achieve goals using *ops*."
(find-all-if #'action-p
(achieve-all (cons '(start) state) goals nil)))
(defun action-p (x)
"Is x something that is (start) or (executing ...)?"
(or (equal x '(start)) (executing-p x)))
;;; ==============================
(defun find-path (start end)
"Search a maze for a path from start to end."
(let ((results (GPS `((at ,start)) `((at ,end)))))
(unless (null results)
(cons start (mapcar #'destination
(remove '(start) results
:test #'equal))))))
(defun destination (action)
"Find the Y in (executing (move from X to Y))"
(fifth (second action)))
;;; ==============================
(defun make-block-ops (blocks)
(let ((ops nil))
(dolist (a blocks)
(dolist (b blocks)
(unless (equal a b)
(dolist (c blocks)
(unless (or (equal c a) (equal c b))
(push (move-op a b c) ops)))
(push (move-op a 'table b) ops)
(push (move-op a b 'table) ops))))
ops))
(defun move-op (a b c)
"Make an operator to move A from B to C."
(op `(move ,a from ,b to ,c)
:preconds `((space on ,a) (space on ,c) (,a on ,b))
:add-list (move-ons a b c)
:del-list (move-ons a c b)))
(defun move-ons (a b c)
(if (eq b 'table)
`((,a on ,c))
`((,a on ,c) (space on ,b))))
;;; ==============================
(defun achieve-all (state goals goal-stack)
"Achieve each goal, trying several orderings."
(some #'(lambda (goals) (achieve-each state goals goal-stack))
(orderings goals)))
(defun achieve-each (state goals goal-stack)
"Achieve each goal, and make sure they still hold at the end."
(let ((current-state state))
(if (and (every #'(lambda (g)
(setf current-state
(achieve current-state g goal-stack)))
goals)
(subsetp goals current-state :test #'equal))
current-state)))
(defun orderings (l)
(if (> (length l) 1)
(list l (reverse l))
(list l)))
;;; ==============================
(defun achieve (state goal goal-stack)
"A goal is achieved if it already holds,
or if there is an appropriate op for it that is applicable."
(dbg-indent :gps (length goal-stack) "Goal: ~a" goal)
(cond ((member-equal goal state) state)
((member-equal goal goal-stack) nil)
(t (some #'(lambda (op) (apply-op state goal op goal-stack))
(appropriate-ops goal state))))) ;***
(defun appropriate-ops (goal state)
"Return a list of appropriate operators,
sorted by the number of unfulfilled preconditions."
(sort (copy-list (find-all goal *ops* :test #'appropriate-p)) #'<
:key #'(lambda (op)
(count-if #'(lambda (precond)
(not (member-equal precond state)))
(op-preconds op)))))
;;; ==============================
(defun permutations (bag)
"Return a list of all the permutations of the input."
;; If the input is nil, there is only one permutation:
;; nil itself
(if (null bag)
'(())
;; Otherwise, take an element, e, out of the bag.
;; Generate all permutations of the remaining elements,
;; And add e to the front of each of these.
;; Do this for all possible e to generate all permutations.
(mapcan #'(lambda (e)
(mapcar #'(lambda (p) (cons e p))
(permutations
(remove e bag :count 1 :test #'eq))))
bag)))
;;; ==============================