-
Notifications
You must be signed in to change notification settings - Fork 612
/
Copy path_rank_genes_groups.py
807 lines (672 loc) · 28.2 KB
/
_rank_genes_groups.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
"""Rank genes according to differential expression.
"""
from math import floor
from typing import Iterable, Union, Optional, Literal
import numpy as np
import pandas as pd
from anndata import AnnData
from scipy.sparse import issparse, vstack
from .. import _utils
from .. import logging as logg
from ..preprocessing._simple import _get_mean_var
from ..get import _get_obs_rep
from .._utils import check_nonnegative_integers
_Method = Optional[Literal['logreg', 't-test', 'wilcoxon', 't-test_overestim_var']]
_CorrMethod = Literal['benjamini-hochberg', 'bonferroni']
def _select_top_n(scores, n_top):
n_from = scores.shape[0]
reference_indices = np.arange(n_from, dtype=int)
partition = np.argpartition(scores, -n_top)[-n_top:]
partial_indices = np.argsort(scores[partition])[::-1]
global_indices = reference_indices[partition][partial_indices]
return global_indices
def _ranks(X, mask=None, mask_rest=None):
CONST_MAX_SIZE = 10000000
n_genes = X.shape[1]
if issparse(X):
merge = lambda tpl: vstack(tpl).toarray()
adapt = lambda X: X.toarray()
else:
merge = np.vstack
adapt = lambda X: X
masked = mask is not None and mask_rest is not None
if masked:
n_cells = np.count_nonzero(mask) + np.count_nonzero(mask_rest)
get_chunk = lambda X, left, right: merge(
(X[mask, left:right], X[mask_rest, left:right])
)
else:
n_cells = X.shape[0]
get_chunk = lambda X, left, right: adapt(X[:, left:right])
# Calculate chunk frames
max_chunk = floor(CONST_MAX_SIZE / n_cells)
for left in range(0, n_genes, max_chunk):
right = min(left + max_chunk, n_genes)
df = pd.DataFrame(data=get_chunk(X, left, right))
ranks = df.rank()
yield ranks, left, right
def _tiecorrect(ranks):
size = np.float64(ranks.shape[0])
if size < 2:
return np.repeat(ranks.shape[1], 1.0)
arr = np.sort(ranks, axis=0)
tf = np.insert(arr[1:] != arr[:-1], (0, arr.shape[0] - 1), True, axis=0)
idx = np.where(tf, np.arange(tf.shape[0])[:, None], 0)
idx = np.sort(idx, axis=0)
cnt = np.diff(idx, axis=0).astype(np.float64)
return 1.0 - (cnt**3 - cnt).sum(axis=0) / (size**3 - size)
class _RankGenes:
def __init__(
self,
adata,
groups,
groupby,
reference='rest',
use_raw=True,
layer=None,
comp_pts=False,
):
if 'log1p' in adata.uns_keys() and adata.uns['log1p']['base'] is not None:
self.expm1_func = lambda x: np.expm1(x * np.log(adata.uns['log1p']['base']))
else:
self.expm1_func = np.expm1
self.groups_order, self.groups_masks = _utils.select_groups(
adata, groups, groupby
)
# Singlet groups cause division by zero errors
invalid_groups_selected = set(self.groups_order) & set(
adata.obs[groupby].value_counts().loc[lambda x: x < 2].index
)
if len(invalid_groups_selected) > 0:
raise ValueError(
"Could not calculate statistics for groups {} since they only "
"contain one sample.".format(', '.join(invalid_groups_selected))
)
adata_comp = adata
if layer is not None:
if use_raw:
raise ValueError("Cannot specify `layer` and have `use_raw=True`.")
X = adata_comp.layers[layer]
else:
if use_raw and adata.raw is not None:
adata_comp = adata.raw
X = adata_comp.X
# for correct getnnz calculation
if issparse(X):
X.eliminate_zeros()
self.X = X
self.var_names = adata_comp.var_names
self.ireference = None
if reference != 'rest':
self.ireference = np.where(self.groups_order == reference)[0][0]
self.means = None
self.vars = None
self.means_rest = None
self.vars_rest = None
self.comp_pts = comp_pts
self.pts = None
self.pts_rest = None
self.stats = None
# for logreg only
self.grouping_mask = adata.obs[groupby].isin(self.groups_order)
self.grouping = adata.obs.loc[self.grouping_mask, groupby]
def _basic_stats(self):
n_genes = self.X.shape[1]
n_groups = self.groups_masks.shape[0]
self.means = np.zeros((n_groups, n_genes))
self.vars = np.zeros((n_groups, n_genes))
self.pts = np.zeros((n_groups, n_genes)) if self.comp_pts else None
if self.ireference is None:
self.means_rest = np.zeros((n_groups, n_genes))
self.vars_rest = np.zeros((n_groups, n_genes))
self.pts_rest = np.zeros((n_groups, n_genes)) if self.comp_pts else None
else:
mask_rest = self.groups_masks[self.ireference]
X_rest = self.X[mask_rest]
self.means[self.ireference], self.vars[self.ireference] = _get_mean_var(
X_rest
)
# deleting the next line causes a memory leak for some reason
del X_rest
if issparse(self.X):
get_nonzeros = lambda X: X.getnnz(axis=0)
else:
get_nonzeros = lambda X: np.count_nonzero(X, axis=0)
for imask, mask in enumerate(self.groups_masks):
X_mask = self.X[mask]
if self.comp_pts:
self.pts[imask] = get_nonzeros(X_mask) / X_mask.shape[0]
if self.ireference is not None and imask == self.ireference:
continue
self.means[imask], self.vars[imask] = _get_mean_var(X_mask)
if self.ireference is None:
mask_rest = ~mask
X_rest = self.X[mask_rest]
self.means_rest[imask], self.vars_rest[imask] = _get_mean_var(X_rest)
# this can be costly for sparse data
if self.comp_pts:
self.pts_rest[imask] = get_nonzeros(X_rest) / X_rest.shape[0]
# deleting the next line causes a memory leak for some reason
del X_rest
def t_test(self, method):
from scipy import stats
self._basic_stats()
for group_index, mask in enumerate(self.groups_masks):
if self.ireference is not None and group_index == self.ireference:
continue
mean_group = self.means[group_index]
var_group = self.vars[group_index]
ns_group = np.count_nonzero(mask)
if self.ireference is not None:
mean_rest = self.means[self.ireference]
var_rest = self.vars[self.ireference]
ns_other = np.count_nonzero(self.groups_masks[self.ireference])
else:
mean_rest = self.means_rest[group_index]
var_rest = self.vars_rest[group_index]
ns_other = self.X.shape[0] - ns_group
if method == 't-test':
ns_rest = ns_other
elif method == 't-test_overestim_var':
# hack for overestimating the variance for small groups
ns_rest = ns_group
else:
raise ValueError('Method does not exist.')
# TODO: Come up with better solution. Mask unexpressed genes?
# See https://github.com/scipy/scipy/issues/10269
with np.errstate(invalid="ignore"):
scores, pvals = stats.ttest_ind_from_stats(
mean1=mean_group,
std1=np.sqrt(var_group),
nobs1=ns_group,
mean2=mean_rest,
std2=np.sqrt(var_rest),
nobs2=ns_rest,
equal_var=False, # Welch's
)
# I think it's only nan when means are the same and vars are 0
scores[np.isnan(scores)] = 0
# This also has to happen for Benjamini Hochberg
pvals[np.isnan(pvals)] = 1
yield group_index, scores, pvals
def wilcoxon(self, tie_correct):
from scipy import stats
self._basic_stats()
n_genes = self.X.shape[1]
# First loop: Loop over all genes
if self.ireference is not None:
# initialize space for z-scores
scores = np.zeros(n_genes)
# initialize space for tie correction coefficients
if tie_correct:
T = np.zeros(n_genes)
else:
T = 1
for group_index, mask in enumerate(self.groups_masks):
if group_index == self.ireference:
continue
mask_rest = self.groups_masks[self.ireference]
n_active = np.count_nonzero(mask)
m_active = np.count_nonzero(mask_rest)
if n_active <= 25 or m_active <= 25:
logg.hint(
'Few observations in a group for '
'normal approximation (<=25). Lower test accuracy.'
)
# Calculate rank sums for each chunk for the current mask
for ranks, left, right in _ranks(self.X, mask, mask_rest):
scores[left:right] = np.sum(ranks.iloc[0:n_active, :])
if tie_correct:
T[left:right] = _tiecorrect(ranks)
std_dev = np.sqrt(
T * n_active * m_active * (n_active + m_active + 1) / 12.0
)
scores = (
scores - (n_active * ((n_active + m_active + 1) / 2.0))
) / std_dev
scores[np.isnan(scores)] = 0
pvals = 2 * stats.distributions.norm.sf(np.abs(scores))
yield group_index, scores, pvals
# If no reference group exists,
# ranking needs only to be done once (full mask)
else:
n_groups = self.groups_masks.shape[0]
scores = np.zeros((n_groups, n_genes))
n_cells = self.X.shape[0]
if tie_correct:
T = np.zeros((n_groups, n_genes))
for ranks, left, right in _ranks(self.X):
# sum up adjusted_ranks to calculate W_m,n
for imask, mask in enumerate(self.groups_masks):
scores[imask, left:right] = np.sum(ranks.iloc[mask, :])
if tie_correct:
T[imask, left:right] = _tiecorrect(ranks)
for group_index, mask in enumerate(self.groups_masks):
n_active = np.count_nonzero(mask)
if tie_correct:
T_i = T[group_index]
else:
T_i = 1
std_dev = np.sqrt(
T_i * n_active * (n_cells - n_active) * (n_cells + 1) / 12.0
)
scores[group_index, :] = (
scores[group_index, :] - (n_active * (n_cells + 1) / 2.0)
) / std_dev
scores[np.isnan(scores)] = 0
pvals = 2 * stats.distributions.norm.sf(np.abs(scores[group_index, :]))
yield group_index, scores[group_index], pvals
def logreg(self, **kwds):
# if reference is not set, then the groups listed will be compared to the rest
# if reference is set, then the groups listed will be compared only to the other groups listed
from sklearn.linear_model import LogisticRegression
# Indexing with a series causes issues, possibly segfault
X = self.X[self.grouping_mask.values, :]
if len(self.groups_order) == 1:
raise ValueError('Cannot perform logistic regression on a single cluster.')
clf = LogisticRegression(**kwds)
clf.fit(X, self.grouping.cat.codes)
scores_all = clf.coef_
for igroup, _ in enumerate(self.groups_order):
if len(self.groups_order) <= 2: # binary logistic regression
scores = scores_all[0]
else:
scores = scores_all[igroup]
yield igroup, scores, None
if len(self.groups_order) <= 2:
break
def compute_statistics(
self,
method,
corr_method='benjamini-hochberg',
n_genes_user=None,
rankby_abs=False,
tie_correct=False,
**kwds,
):
if method in {'t-test', 't-test_overestim_var'}:
generate_test_results = self.t_test(method)
elif method == 'wilcoxon':
generate_test_results = self.wilcoxon(tie_correct)
elif method == 'logreg':
generate_test_results = self.logreg(**kwds)
self.stats = None
n_genes = self.X.shape[1]
for group_index, scores, pvals in generate_test_results:
group_name = str(self.groups_order[group_index])
if n_genes_user is not None:
scores_sort = np.abs(scores) if rankby_abs else scores
global_indices = _select_top_n(scores_sort, n_genes_user)
first_col = 'names'
else:
global_indices = slice(None)
first_col = 'scores'
if self.stats is None:
idx = pd.MultiIndex.from_tuples([(group_name, first_col)])
self.stats = pd.DataFrame(columns=idx)
if n_genes_user is not None:
self.stats[group_name, 'names'] = self.var_names[global_indices]
self.stats[group_name, 'scores'] = scores[global_indices]
if pvals is not None:
self.stats[group_name, 'pvals'] = pvals[global_indices]
if corr_method == 'benjamini-hochberg':
from statsmodels.stats.multitest import multipletests
pvals[np.isnan(pvals)] = 1
_, pvals_adj, _, _ = multipletests(
pvals, alpha=0.05, method='fdr_bh'
)
elif corr_method == 'bonferroni':
pvals_adj = np.minimum(pvals * n_genes, 1.0)
self.stats[group_name, 'pvals_adj'] = pvals_adj[global_indices]
if self.means is not None:
mean_group = self.means[group_index]
if self.ireference is None:
mean_rest = self.means_rest[group_index]
else:
mean_rest = self.means[self.ireference]
foldchanges = (self.expm1_func(mean_group) + 1e-9) / (
self.expm1_func(mean_rest) + 1e-9
) # add small value to remove 0's
self.stats[group_name, 'logfoldchanges'] = np.log2(
foldchanges[global_indices]
)
if n_genes_user is None:
self.stats.index = self.var_names
# TODO: Make arguments after groupby keyword only
def rank_genes_groups(
adata: AnnData,
groupby: str,
use_raw: Optional[bool] = None,
groups: Union[Literal['all'], Iterable[str]] = 'all',
reference: str = 'rest',
n_genes: Optional[int] = None,
rankby_abs: bool = False,
pts: bool = False,
key_added: Optional[str] = None,
copy: bool = False,
method: _Method = None,
corr_method: _CorrMethod = 'benjamini-hochberg',
tie_correct: bool = False,
layer: Optional[str] = None,
**kwds,
) -> Optional[AnnData]:
"""\
Rank genes for characterizing groups.
Expects logarithmized data.
Parameters
----------
adata
Annotated data matrix.
groupby
The key of the observations grouping to consider.
use_raw
Use `raw` attribute of `adata` if present.
layer
Key from `adata.layers` whose value will be used to perform tests on.
groups
Subset of groups, e.g. [`'g1'`, `'g2'`, `'g3'`], to which comparison
shall be restricted, or `'all'` (default), for all groups.
reference
If `'rest'`, compare each group to the union of the rest of the group.
If a group identifier, compare with respect to this group.
n_genes
The number of genes that appear in the returned tables.
Defaults to all genes.
method
The default method is `'t-test'`,
`'t-test_overestim_var'` overestimates variance of each group,
`'wilcoxon'` uses Wilcoxon rank-sum,
`'logreg'` uses logistic regression. See [Ntranos18]_,
`here <https://github.com/scverse/scanpy/issues/95>`__ and `here
<http://www.nxn.se/valent/2018/3/5/actionable-scrna-seq-clusters>`__,
for why this is meaningful.
corr_method
p-value correction method.
Used only for `'t-test'`, `'t-test_overestim_var'`, and `'wilcoxon'`.
tie_correct
Use tie correction for `'wilcoxon'` scores.
Used only for `'wilcoxon'`.
rankby_abs
Rank genes by the absolute value of the score, not by the
score. The returned scores are never the absolute values.
pts
Compute the fraction of cells expressing the genes.
key_added
The key in `adata.uns` information is saved to.
**kwds
Are passed to test methods. Currently this affects only parameters that
are passed to :class:`sklearn.linear_model.LogisticRegression`.
For instance, you can pass `penalty='l1'` to try to come up with a
minimal set of genes that are good predictors (sparse solution meaning
few non-zero fitted coefficients).
Returns
-------
**names** : structured `np.ndarray` (`.uns['rank_genes_groups']`)
Structured array to be indexed by group id storing the gene
names. Ordered according to scores.
**scores** : structured `np.ndarray` (`.uns['rank_genes_groups']`)
Structured array to be indexed by group id storing the z-score
underlying the computation of a p-value for each gene for each
group. Ordered according to scores.
**logfoldchanges** : structured `np.ndarray` (`.uns['rank_genes_groups']`)
Structured array to be indexed by group id storing the log2
fold change for each gene for each group. Ordered according to
scores. Only provided if method is 't-test' like.
Note: this is an approximation calculated from mean-log values.
**pvals** : structured `np.ndarray` (`.uns['rank_genes_groups']`)
p-values.
**pvals_adj** : structured `np.ndarray` (`.uns['rank_genes_groups']`)
Corrected p-values.
**pts** : `pandas.DataFrame` (`.uns['rank_genes_groups']`)
Fraction of cells expressing the genes for each group.
**pts_rest** : `pandas.DataFrame` (`.uns['rank_genes_groups']`)
Only if `reference` is set to `'rest'`.
Fraction of cells from the union of the rest of each group
expressing the genes.
Notes
-----
There are slight inconsistencies depending on whether sparse
or dense data are passed. See `here <https://github.com/scverse/scanpy/blob/master/scanpy/tests/test_rank_genes_groups.py>`__.
Examples
--------
>>> import scanpy as sc
>>> adata = sc.datasets.pbmc68k_reduced()
>>> sc.tl.rank_genes_groups(adata, 'bulk_labels', method='wilcoxon')
>>> # to visualize the results
>>> sc.pl.rank_genes_groups(adata)
"""
if use_raw is None:
use_raw = adata.raw is not None
elif use_raw is True and adata.raw is None:
raise ValueError("Received `use_raw=True`, but `adata.raw` is empty.")
if method is None:
logg.warning(
"Default of the method has been changed to 't-test' from 't-test_overestim_var'"
)
method = 't-test'
if 'only_positive' in kwds:
rankby_abs = not kwds.pop('only_positive') # backwards compat
start = logg.info('ranking genes')
avail_methods = {'t-test', 't-test_overestim_var', 'wilcoxon', 'logreg'}
if method not in avail_methods:
raise ValueError(f'Method must be one of {avail_methods}.')
avail_corr = {'benjamini-hochberg', 'bonferroni'}
if corr_method not in avail_corr:
raise ValueError(f'Correction method must be one of {avail_corr}.')
adata = adata.copy() if copy else adata
_utils.sanitize_anndata(adata)
# for clarity, rename variable
if groups == 'all':
groups_order = 'all'
elif isinstance(groups, (str, int)):
raise ValueError('Specify a sequence of groups')
else:
groups_order = list(groups)
if isinstance(groups_order[0], int):
groups_order = [str(n) for n in groups_order]
if reference != 'rest' and reference not in set(groups_order):
groups_order += [reference]
if reference != 'rest' and reference not in adata.obs[groupby].cat.categories:
cats = adata.obs[groupby].cat.categories.tolist()
raise ValueError(
f'reference = {reference} needs to be one of groupby = {cats}.'
)
if key_added is None:
key_added = 'rank_genes_groups'
adata.uns[key_added] = {}
adata.uns[key_added]['params'] = dict(
groupby=groupby,
reference=reference,
method=method,
use_raw=use_raw,
layer=layer,
corr_method=corr_method,
)
test_obj = _RankGenes(adata, groups_order, groupby, reference, use_raw, layer, pts)
if check_nonnegative_integers(test_obj.X) and method != 'logreg':
logg.warning(
"It seems you use rank_genes_groups on the raw count data. "
"Please logarithmize your data before calling rank_genes_groups."
)
# for clarity, rename variable
n_genes_user = n_genes
# make sure indices are not OoB in case there are less genes than n_genes
# defaults to all genes
if n_genes_user is None or n_genes_user > test_obj.X.shape[1]:
n_genes_user = test_obj.X.shape[1]
logg.debug(f'consider {groupby!r} groups:')
logg.debug(f'with sizes: {np.count_nonzero(test_obj.groups_masks, axis=1)}')
test_obj.compute_statistics(
method, corr_method, n_genes_user, rankby_abs, tie_correct, **kwds
)
if test_obj.pts is not None:
groups_names = [str(name) for name in test_obj.groups_order]
adata.uns[key_added]['pts'] = pd.DataFrame(
test_obj.pts.T, index=test_obj.var_names, columns=groups_names
)
if test_obj.pts_rest is not None:
adata.uns[key_added]['pts_rest'] = pd.DataFrame(
test_obj.pts_rest.T, index=test_obj.var_names, columns=groups_names
)
test_obj.stats.columns = test_obj.stats.columns.swaplevel()
dtypes = {
'names': 'O',
'scores': 'float32',
'logfoldchanges': 'float32',
'pvals': 'float64',
'pvals_adj': 'float64',
}
for col in test_obj.stats.columns.levels[0]:
adata.uns[key_added][col] = test_obj.stats[col].to_records(
index=False, column_dtypes=dtypes[col]
)
logg.info(
' finished',
time=start,
deep=(
f'added to `.uns[{key_added!r}]`\n'
" 'names', sorted np.recarray to be indexed by group ids\n"
" 'scores', sorted np.recarray to be indexed by group ids\n"
+ (
" 'logfoldchanges', sorted np.recarray to be indexed by group ids\n"
" 'pvals', sorted np.recarray to be indexed by group ids\n"
" 'pvals_adj', sorted np.recarray to be indexed by group ids"
if method in {'t-test', 't-test_overestim_var', 'wilcoxon'}
else ''
)
),
)
return adata if copy else None
def _calc_frac(X):
if issparse(X):
n_nonzero = X.getnnz(axis=0)
else:
n_nonzero = np.count_nonzero(X, axis=0)
return n_nonzero / X.shape[0]
def filter_rank_genes_groups(
adata: AnnData,
key=None,
groupby=None,
use_raw=None,
key_added='rank_genes_groups_filtered',
min_in_group_fraction=0.25,
min_fold_change=1,
max_out_group_fraction=0.5,
compare_abs=False,
) -> None:
"""\
Filters out genes based on log fold change and fraction of genes expressing the
gene within and outside the `groupby` categories.
See :func:`~scanpy.tl.rank_genes_groups`.
Results are stored in `adata.uns[key_added]`
(default: 'rank_genes_groups_filtered').
To preserve the original structure of adata.uns['rank_genes_groups'],
filtered genes are set to `NaN`.
Parameters
----------
adata
key
groupby
use_raw
key_added
min_in_group_fraction
min_fold_change
max_out_group_fraction
compare_abs
If `True`, compare absolute values of log fold change with `min_fold_change`.
Returns
-------
Same output as :func:`scanpy.tl.rank_genes_groups` but with filtered genes names set to
`nan`
Examples
--------
>>> import scanpy as sc
>>> adata = sc.datasets.pbmc68k_reduced()
>>> sc.tl.rank_genes_groups(adata, 'bulk_labels', method='wilcoxon')
>>> sc.tl.filter_rank_genes_groups(adata, min_fold_change=3)
>>> # visualize results
>>> sc.pl.rank_genes_groups(adata, key='rank_genes_groups_filtered')
>>> # visualize results using dotplot
>>> sc.pl.rank_genes_groups_dotplot(adata, key='rank_genes_groups_filtered')
"""
if key is None:
key = 'rank_genes_groups'
if groupby is None:
groupby = adata.uns[key]['params']['groupby']
if use_raw is None:
use_raw = adata.uns[key]['params']['use_raw']
same_params = (
adata.uns[key]['params']['groupby'] == groupby
and adata.uns[key]['params']['reference'] == 'rest'
and adata.uns[key]['params']['use_raw'] == use_raw
)
use_logfolds = same_params and 'logfoldchanges' in adata.uns[key]
use_fraction = same_params and 'pts_rest' in adata.uns[key]
# convert structured numpy array into DataFrame
gene_names = pd.DataFrame(adata.uns[key]['names'])
fraction_in_cluster_matrix = pd.DataFrame(
np.zeros(gene_names.shape),
columns=gene_names.columns,
index=gene_names.index,
)
fraction_out_cluster_matrix = pd.DataFrame(
np.zeros(gene_names.shape),
columns=gene_names.columns,
index=gene_names.index,
)
if use_logfolds:
fold_change_matrix = pd.DataFrame(adata.uns[key]['logfoldchanges'])
else:
fold_change_matrix = pd.DataFrame(
np.zeros(gene_names.shape),
columns=gene_names.columns,
index=gene_names.index,
)
if 'log1p' in adata.uns_keys() and adata.uns['log1p']['base'] is not None:
expm1_func = lambda x: np.expm1(x * np.log(adata.uns['log1p']['base']))
else:
expm1_func = np.expm1
logg.info(
f"Filtering genes using: "
f"min_in_group_fraction: {min_in_group_fraction} "
f"min_fold_change: {min_fold_change}, "
f"max_out_group_fraction: {max_out_group_fraction}"
)
for cluster in gene_names.columns:
# iterate per column
var_names = gene_names[cluster].values
if not use_logfolds or not use_fraction:
sub_X = adata.raw[:, var_names].X if use_raw else adata[:, var_names].X
in_group = adata.obs[groupby] == cluster
X_in = sub_X[in_group]
X_out = sub_X[~in_group]
if use_fraction:
fraction_in_cluster_matrix.loc[:, cluster] = (
adata.uns[key]['pts'][cluster].loc[var_names].values
)
fraction_out_cluster_matrix.loc[:, cluster] = (
adata.uns[key]['pts_rest'][cluster].loc[var_names].values
)
else:
fraction_in_cluster_matrix.loc[:, cluster] = _calc_frac(X_in)
fraction_out_cluster_matrix.loc[:, cluster] = _calc_frac(X_out)
if not use_logfolds:
# compute mean value
mean_in_cluster = np.ravel(X_in.mean(0))
mean_out_cluster = np.ravel(X_out.mean(0))
# compute fold change
fold_change_matrix.loc[:, cluster] = np.log2(
(expm1_func(mean_in_cluster) + 1e-9)
/ (expm1_func(mean_out_cluster) + 1e-9)
)
if compare_abs:
fold_change_matrix = fold_change_matrix.abs()
# filter original_matrix
gene_names = gene_names[
(fraction_in_cluster_matrix > min_in_group_fraction)
& (fraction_out_cluster_matrix < max_out_group_fraction)
& (fold_change_matrix > min_fold_change)
]
# create new structured array using 'key_added'.
adata.uns[key_added] = adata.uns[key].copy()
adata.uns[key_added]['names'] = gene_names.to_records(index=False)