-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_helpers.py
73 lines (70 loc) · 2.55 KB
/
data_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import numpy as np
import re
import os
def clean_str(string):
"""
Tokenization/string cleaning for all datasets except for SST.
Original taken from https://github.com/yoonkim/CNN_sentence/blob/master/process_data.py
"""
# string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string)
# string = re.sub(r"\'s", " \'s", string)
# string = re.sub(r"\'ve", " \'ve", string)
# string = re.sub(r"n\'t", " n\'t", string)
# string = re.sub(r"\'re", " \'re", string)
# string = re.sub(r"\'d", " \'d", string)
# string = re.sub(r"\'ll", " \'ll", string)
string = re.sub(r",", " , ", string)
string = re.sub(r"!", " ! ", string)
string = re.sub(r"。", " 。 ", string)
string = re.sub(r"-", " - ", string)
string = re.sub(r"\(", " \( ", string)
string = re.sub(r"\)", " \) ", string)
string = re.sub(r"\?", " \? ", string)
# string = re.sub(r"\s{2,}", " ", string)
return string.strip().lower()
def load_data_and_labels(positive_data_file, negative_data_file):
"""
Loads MR polarity data from files, splits the data into words and generates labels.
Returns split sentences and labels.
"""
file_lst = os.listdir('Task1data/fenciTrain/')
l = len(file_lst)
x_text = []
y = []
for i,file in enumerate(file_lst):
kind = list(open('Task1data/fenciTrain/'+file, "r", encoding='utf-8').readlines())
kind = [s.strip() for s in kind]
zeros = []
it = 0
while it < l:
zeros.append(0)
it += 1
zeros[i] = 1
y_text = [zeros for _ in kind]
if len(y)==0:
y = y_text
else:
y = np.concatenate([y, y_text], 0)
x_text = x_text + kind
x_text = [clean_str(sent) for sent in x_text]
return [x_text, y]
# if __name__ == '__main__':
# load_data_and_labels('','')
def batch_iter(data, batch_size, num_epochs, shuffle=True):
"""
Generates a batch iterator for a dataset.
"""
data = np.array(data)
data_size = len(data)
num_batches_per_epoch = int((len(data)-1)/batch_size) + 1
for epoch in range(num_epochs):
# Shuffle the data at each epoch
if shuffle:
shuffle_indices = np.random.permutation(np.arange(data_size))
shuffled_data = data[shuffle_indices]
else:
shuffled_data = data
for batch_num in range(num_batches_per_epoch):
start_index = batch_num * batch_size
end_index = min((batch_num + 1) * batch_size, data_size)
yield shuffled_data[start_index:end_index]