-
Notifications
You must be signed in to change notification settings - Fork 25
/
app.py
599 lines (525 loc) · 21.5 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
import subprocess, os, sys
result = subprocess.run(["pip", "install", "-e", "GroundingDINO"], check=True)
print(f"pip install GroundingDINO = {result}")
sys.path.insert(0, "./GroundingDINO")
if not os.path.exists("./sam_vit_h_4b8939.pth"):
result = subprocess.run(
[
"wget",
"https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth",
],
check=True,
)
print(f"wget sam_vit_h_4b8939.pth result = {result}")
import argparse
import random
import warnings
import json
import gradio as gr
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
from scipy import ndimage
from PIL import Image
from huggingface_hub import hf_hub_download
from segments.utils import bitmap2file
# Grounding DINO
import GroundingDINO.groundingdino.datasets.transforms as T
from GroundingDINO.groundingdino.models import build_model
from GroundingDINO.groundingdino.util import box_ops
from GroundingDINO.groundingdino.util.slconfig import SLConfig
from GroundingDINO.groundingdino.util.utils import (
clean_state_dict,
)
from GroundingDINO.groundingdino.util.inference import annotate, predict
# segment anything
from segment_anything import build_sam, SamPredictor
# CLIPSeg
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
def load_model_hf(model_config_path, repo_id, filename, device):
args = SLConfig.fromfile(model_config_path)
model = build_model(args)
args.device = device
cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
checkpoint = torch.load(cache_file, map_location=device)
log = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
print("Model loaded from {} \n => {}".format(cache_file, log))
_ = model.eval()
model = model.to(device)
return model
def load_image_for_dino(image):
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
dino_image, _ = transform(image, None)
return dino_image
def dino_detection(
model,
image,
image_array,
category_names,
category_name_to_id,
box_threshold,
text_threshold,
device,
visualize=False,
):
detection_prompt = " . ".join(category_names)
dino_image = load_image_for_dino(image)
dino_image = dino_image.to(device)
with torch.no_grad():
boxes, logits, phrases = predict(
model=model,
image=dino_image,
caption=detection_prompt,
box_threshold=box_threshold,
text_threshold=text_threshold,
device=device,
remove_combined=True
)
category_ids = [category_name_to_id[phrase] for phrase in phrases]
if visualize:
annotated_frame = annotate(
image_source=image_array, boxes=boxes, logits=logits, phrases=phrases
)
annotated_frame = annotated_frame[..., ::-1] # BGR to RGB
visualization = Image.fromarray(annotated_frame)
return boxes, category_ids, visualization
else:
return boxes, category_ids, phrases
def sam_masks_from_dino_boxes(predictor, image_array, boxes, device):
# box: normalized box xywh -> unnormalized xyxy
H, W, _ = image_array.shape
boxes_xyxy = box_ops.box_cxcywh_to_xyxy(boxes) * torch.Tensor([W, H, W, H])
transformed_boxes = predictor.transform.apply_boxes_torch(
boxes_xyxy, image_array.shape[:2]
).to(device)
thing_masks, _, _ = predictor.predict_torch(
point_coords=None,
point_labels=None,
boxes=transformed_boxes,
multimask_output=False,
)
return thing_masks
def preds_to_semantic_inds(preds, threshold):
flat_preds = preds.reshape((preds.shape[0], -1))
# Initialize a dummy "unlabeled" mask with the threshold
flat_preds_with_treshold = torch.full(
(preds.shape[0] + 1, flat_preds.shape[-1]), threshold
)
flat_preds_with_treshold[1 : preds.shape[0] + 1, :] = flat_preds
# Get the top mask index for each pixel
semantic_inds = torch.topk(flat_preds_with_treshold, 1, dim=0).indices.reshape(
(preds.shape[-2], preds.shape[-1])
)
return semantic_inds
def clipseg_segmentation(
processor, model, image, category_names, background_threshold, device
):
inputs = processor(
text=category_names,
images=[image] * len(category_names),
padding="max_length",
return_tensors="pt",
).to(device)
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
if len(logits.shape) == 2:
logits = logits.unsqueeze(0)
# resize the outputs
upscaled_logits = nn.functional.interpolate(
logits.unsqueeze(1),
size=(image.size[1], image.size[0]),
mode="bilinear",
)
preds = torch.sigmoid(upscaled_logits.squeeze(dim=1))
semantic_inds = preds_to_semantic_inds(preds, background_threshold)
return preds, semantic_inds
def semantic_inds_to_shrunken_bool_masks(
semantic_inds, shrink_kernel_size, num_categories
):
shrink_kernel = np.ones((shrink_kernel_size, shrink_kernel_size))
bool_masks = torch.zeros((num_categories, *semantic_inds.shape), dtype=bool)
for category in range(num_categories):
binary_mask = semantic_inds == category
shrunken_binary_mask_array = (
ndimage.binary_erosion(binary_mask.numpy(), structure=shrink_kernel)
if shrink_kernel_size > 0
else binary_mask.numpy()
)
bool_masks[category] = torch.from_numpy(shrunken_binary_mask_array)
return bool_masks
def clip_and_shrink_preds(semantic_inds, preds, shrink_kernel_size, num_categories):
# convert semantic_inds to shrunken bool masks
bool_masks = semantic_inds_to_shrunken_bool_masks(
semantic_inds, shrink_kernel_size, num_categories
).to(preds.device)
sizes = [
torch.sum(bool_masks[i].int()).item() for i in range(1, bool_masks.size(0))
]
max_size = max(sizes)
relative_sizes = [size / max_size for size in sizes] if max_size > 0 else sizes
# use bool masks to clip preds
clipped_preds = torch.zeros_like(preds)
for i in range(1, bool_masks.size(0)):
float_mask = bool_masks[i].float()
clipped_preds[i - 1] = preds[i - 1] * float_mask
return clipped_preds, relative_sizes
def sample_points_based_on_preds(preds, N):
height, width = preds.shape
weights = preds.ravel()
indices = np.arange(height * width)
# Randomly sample N indices based on the weights
sampled_indices = random.choices(indices, weights=weights, k=N)
# Convert the sampled indices into (col, row) coordinates
sampled_points = [(index % width, index // width) for index in sampled_indices]
return sampled_points
def upsample_pred(pred, image_source):
pred = pred.unsqueeze(dim=0)
original_height = image_source.shape[0]
original_width = image_source.shape[1]
larger_dim = max(original_height, original_width)
aspect_ratio = original_height / original_width
# upsample the tensor to the larger dimension
upsampled_tensor = F.interpolate(
pred, size=(larger_dim, larger_dim), mode="bilinear", align_corners=False
)
# remove the padding (at the end) to get the original image resolution
if original_height > original_width:
target_width = int(upsampled_tensor.shape[3] * aspect_ratio)
upsampled_tensor = upsampled_tensor[:, :, :, :target_width]
else:
target_height = int(upsampled_tensor.shape[2] * aspect_ratio)
upsampled_tensor = upsampled_tensor[:, :, :target_height, :]
return upsampled_tensor.squeeze(dim=1)
def sam_mask_from_points(predictor, image_array, points):
points_array = np.array(points)
# we only sample positive points, so labels are all 1
points_labels = np.ones(len(points))
# we don't use predict_torch here cause it didn't seem to work...
_, _, logits = predictor.predict(
point_coords=points_array,
point_labels=points_labels,
)
# max over the 3 segmentation levels
total_pred = torch.max(torch.sigmoid(torch.tensor(logits)), dim=0)[0].unsqueeze(
dim=0
)
# logits are 256x256 -> upsample back to image shape
upsampled_pred = upsample_pred(total_pred, image_array)
return upsampled_pred
def inds_to_segments_format(
panoptic_inds, thing_category_ids, stuff_category_names, category_name_to_id
):
panoptic_inds_array = panoptic_inds.numpy().astype(np.uint32)
bitmap_file = bitmap2file(panoptic_inds_array, is_segmentation_bitmap=True)
segmentation_bitmap = Image.open(bitmap_file)
stuff_category_ids = [
category_name_to_id[stuff_category_name]
for stuff_category_name in stuff_category_names
]
unique_inds = np.unique(panoptic_inds_array)
stuff_annotations = [
{"id": i, "category_id": stuff_category_ids[i - 1]}
for i in range(1, len(stuff_category_names) + 1)
if i in unique_inds
]
thing_annotations = [
{"id": len(stuff_category_names) + 1 + i, "category_id": thing_category_id}
for i, thing_category_id in enumerate(thing_category_ids)
]
annotations = stuff_annotations + thing_annotations
return segmentation_bitmap, annotations
def generate_panoptic_mask(
image,
thing_category_names_string,
stuff_category_names_string,
dino_box_threshold=0.3,
dino_text_threshold=0.25,
segmentation_background_threshold=0.1,
shrink_kernel_size=20,
num_samples_factor=1000,
task_attributes_json="",
):
if task_attributes_json != "":
task_attributes = json.loads(task_attributes_json)
categories = task_attributes["categories"]
category_name_to_id = {
category["name"]: category["id"] for category in categories
}
# split the categories into "stuff" categories (regions w/o instances)
# and "thing" categories (objects/instances)
stuff_categories = [
category
for category in categories
if "has_instances" not in category or not category["has_instances"]
]
thing_categories = [
category
for category in categories
if "has_instances" in category and category["has_instances"]
]
stuff_category_names = [category["name"] for category in stuff_categories]
thing_category_names = [category["name"] for category in thing_categories]
category_names = thing_category_names + stuff_category_names
else:
# parse inputs
thing_category_names = [
thing_category_name.strip()
for thing_category_name in thing_category_names_string.split(",")
]
stuff_category_names = [
stuff_category_name.strip()
for stuff_category_name in stuff_category_names_string.split(",")
]
category_names = thing_category_names + stuff_category_names
category_name_to_id = {
category_name: i for i, category_name in enumerate(category_names)
}
image = image.convert("RGB")
image_array = np.asarray(image)
# compute SAM image embedding
sam_predictor.set_image(image_array)
# detect boxes for "thing" categories using Grounding DINO
thing_category_ids = []
thing_masks = []
thing_boxes = []
detected_thing_category_names = []
if len(thing_category_names) > 0:
thing_boxes, thing_category_ids, detected_thing_category_names = dino_detection(
dino_model,
image,
image_array,
thing_category_names,
category_name_to_id,
dino_box_threshold,
dino_text_threshold,
device,
)
if len(thing_boxes) > 0:
# get segmentation masks for the thing boxes
thing_masks = sam_masks_from_dino_boxes(
sam_predictor, image_array, thing_boxes, device
)
if len(stuff_category_names) > 0:
# get rough segmentation masks for "stuff" categories using CLIPSeg
clipseg_preds, clipseg_semantic_inds = clipseg_segmentation(
clipseg_processor,
clipseg_model,
image,
stuff_category_names,
segmentation_background_threshold,
device,
)
# remove things from stuff masks
clipseg_semantic_inds_without_things = clipseg_semantic_inds.clone()
if len(thing_boxes) > 0:
combined_things_mask = torch.any(thing_masks, dim=0)
clipseg_semantic_inds_without_things[combined_things_mask[0]] = 0
# clip CLIPSeg preds based on non-overlapping semantic segmentation inds (+ optionally shrink the mask of each category)
# also returns the relative size of each category
clipsed_clipped_preds, relative_sizes = clip_and_shrink_preds(
clipseg_semantic_inds_without_things,
clipseg_preds,
shrink_kernel_size,
len(stuff_category_names) + 1,
)
# get finer segmentation masks for the "stuff" categories using SAM
sam_preds = torch.zeros_like(clipsed_clipped_preds)
for i in range(clipsed_clipped_preds.shape[0]):
clipseg_pred = clipsed_clipped_preds[i]
# for each "stuff" category, sample points in the rough segmentation mask
num_samples = int(relative_sizes[i] * num_samples_factor)
if num_samples == 0:
continue
points = sample_points_based_on_preds(
clipseg_pred.cpu().numpy(), num_samples
)
if len(points) == 0:
continue
# use SAM to get mask for points
pred = sam_mask_from_points(sam_predictor, image_array, points)
sam_preds[i] = pred
sam_semantic_inds = preds_to_semantic_inds(
sam_preds, segmentation_background_threshold
)
# combine the thing inds and the stuff inds into panoptic inds
panoptic_inds = (
sam_semantic_inds.clone()
if len(stuff_category_names) > 0
else torch.zeros(image_array.shape[0], image_array.shape[1], dtype=torch.long)
)
ind = len(stuff_category_names) + 1
for thing_mask in thing_masks:
# overlay thing mask on panoptic inds
panoptic_inds[thing_mask.squeeze(dim=0)] = ind
ind += 1
panoptic_bool_masks = (
semantic_inds_to_shrunken_bool_masks(panoptic_inds, 0, ind + 1)
.numpy()
.astype(int)
)
panoptic_names = (
["unlabeled"] + stuff_category_names + detected_thing_category_names
)
subsection_label_pairs = [
(panoptic_bool_masks[i], panoptic_name)
for i, panoptic_name in enumerate(panoptic_names)
]
segmentation_bitmap, annotations = inds_to_segments_format(
panoptic_inds, thing_category_ids, stuff_category_names, category_name_to_id
)
annotations_json = json.dumps(annotations)
return (image_array, subsection_label_pairs), segmentation_bitmap, annotations_json
config_file = "GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py"
ckpt_repo_id = "ShilongLiu/GroundingDINO"
ckpt_filename = "groundingdino_swint_ogc.pth"
sam_checkpoint = "./sam_vit_h_4b8939.pth"
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using device:", device)
if device != "cpu":
try:
from GroundingDINO.groundingdino import _C
except:
warnings.warn(
"Failed to load custom C++ ops. Running on CPU mode Only in groundingdino!"
)
# initialize groundingdino model
dino_model = load_model_hf(config_file, ckpt_repo_id, ckpt_filename, device)
# initialize SAM
sam = build_sam(checkpoint=sam_checkpoint)
sam.to(device=device)
sam_predictor = SamPredictor(sam)
clipseg_processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
clipseg_model = CLIPSegForImageSegmentation.from_pretrained(
"CIDAS/clipseg-rd64-refined"
)
clipseg_model.to(device)
if __name__ == "__main__":
parser = argparse.ArgumentParser("Panoptic Segment Anything demo", add_help=True)
parser.add_argument("--debug", action="store_true", help="using debug mode")
parser.add_argument("--share", action="store_true", help="share the app")
args = parser.parse_args()
print(f"args = {args}")
block = gr.Blocks(title="Panoptic Segment Anything").queue()
with block:
with gr.Column():
title = gr.Markdown(
"# [Panoptic Segment Anything](https://github.com/segments-ai/panoptic-segment-anything)"
)
description = gr.Markdown(
"Demo for zero-shot panoptic segmentation using Segment Anything, Grounding DINO, and CLIPSeg."
)
with gr.Row():
with gr.Column():
input_image = gr.Image(sources=["upload"], type="pil")
thing_category_names_string = gr.Textbox(
label="Thing categories (i.e. categories with instances), comma-separated",
placeholder="E.g. car, bus, person",
)
stuff_category_names_string = gr.Textbox(
label="Stuff categories (i.e. categories without instances), comma-separated",
placeholder="E.g. sky, road, buildings",
)
run_button = gr.Button(value="Run")
with gr.Accordion("Advanced options", open=False):
box_threshold = gr.Slider(
label="Grounding DINO box threshold",
minimum=0.0,
maximum=1.0,
value=0.3,
step=0.001,
)
text_threshold = gr.Slider(
label="Grounding DINO text threshold",
minimum=0.0,
maximum=1.0,
value=0.25,
step=0.001,
)
segmentation_background_threshold = gr.Slider(
label="Segmentation background threshold (under this threshold, a pixel is considered background/unlabeled)",
minimum=0.0,
maximum=1.0,
value=0.1,
step=0.001,
)
shrink_kernel_size = gr.Slider(
label="Shrink kernel size (how much to shrink the mask before sampling points)",
minimum=0,
maximum=100,
value=20,
step=1,
)
num_samples_factor = gr.Slider(
label="Number of samples factor (how many points to sample in the largest category)",
minimum=0,
maximum=1000,
value=1000,
step=1,
)
task_attributes_json = gr.Textbox(
label="Task attributes JSON",
)
with gr.Column():
annotated_image = gr.AnnotatedImage()
with gr.Accordion("Segmentation bitmap", open=False):
segmentation_bitmap_text = gr.Markdown(
"""
The segmentation bitmap is a 32-bit RGBA png image which contains the segmentation masks.
The alpha channel is set to 255, and the remaining 24-bit values in the RGB channels correspond to the object ids in the annotations list.
Unlabeled regions have a value of 0.
Because of the large dynamic range, the segmentation bitmap appears black in the image viewer.
"""
)
segmentation_bitmap = gr.Image(
type="pil", label="Segmentation bitmap"
)
annotations_json = gr.Textbox(
label="Annotations JSON",
)
examples = gr.Examples(
examples=[
[
"a2d2.png",
"car, bus, person",
"road, sky, buildings, sidewalk",
],
[
"bxl.png",
"car, tram, motorcycle, person",
"road, buildings, sky",
],
],
fn=generate_panoptic_mask,
inputs=[
input_image,
thing_category_names_string,
stuff_category_names_string,
],
outputs=[annotated_image, segmentation_bitmap, annotations_json],
cache_examples=True,
)
run_button.click(
fn=generate_panoptic_mask,
inputs=[
input_image,
thing_category_names_string,
stuff_category_names_string,
box_threshold,
text_threshold,
segmentation_background_threshold,
shrink_kernel_size,
num_samples_factor,
task_attributes_json,
],
outputs=[annotated_image, segmentation_bitmap, annotations_json],
api_name="segment",
)
block.launch(server_name="0.0.0.0", debug=args.debug, share=args.share)