-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmonitoring.py
164 lines (136 loc) · 7.08 KB
/
monitoring.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os, re
import torch
from torch.profiler import profile, ProfilerActivity, tensorboard_trace_handler
from torch.utils.tensorboard import SummaryWriter
import psutil
import logging
import time
from flops import FLOPsCalculator # 이미 존재하는 FLOPsCalculator를 사용
from flops import SLOPsCalculator # 새롭게 추가할 SLOPsCalculator
import pynvml
from model.vae_IF import Quant_VAE, IF_VAE
def setup_logger(name):
logger = logging.getLogger(name)
logger.setLevel(logging.INFO)
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(message)s')
console_handler.setFormatter(formatter)
if not logger.hasHandlers():
logger.addHandler(console_handler)
return logger
logger = setup_logger(__name__)
def numbering(name, log_dir):
dir_list = os.listdir(f"./{log_dir}")
dir_list = [filename for filename in dir_list if name in filename]
if not any([name in filename for filename in dir_list]):
return 1
numbers = [int(filename.split('_')[-1]) for filename in dir_list]
max_number = max(numbers) if numbers else 0
return max_number + 1
class Monitor:
def __init__(self, name, log_dir='log', model_dir='checkpoint'):
times = numbering(name, log_dir)
self.log_dir = f'{log_dir}/{name}_{times}'
self.checkpoint_dir = f'{model_dir}/{name}_{times}'
self.writer = SummaryWriter(log_dir=self.log_dir)
self.name = name
self.cpu_energy_usage = []
self.use_cuda = torch.cuda.is_available()
logger.info(f"Monitor initialized at: {self.log_dir}")
logger.info(f"for tensorboard using this command: tensorboard --logdir={self.log_dir}")
if self.use_cuda:
logger.info("CUDA is available")
pynvml.nvmlInit()
self.gpu_handle = pynvml.nvmlDeviceGetHandleByIndex(0)
else:
logger.warning("CUDA is not available")
def start_monitoring(self, pids):
if self.use_cuda:
try:
pynvml.nvmlInit()
except pynvml.NVMLError as e:
logger.error(f"NVML initialization error: {e}")
return
# GPU monitoring using PyNVML
gpu_power = pynvml.nvmlDeviceGetPowerUsage(self.gpu_handle) / 1000 # mW to W
gpu_mem_used = pynvml.nvmlDeviceGetMemoryInfo(self.gpu_handle).used / (1024 ** 2) # bytes to MB
logger.info(f"GPU Power Usage: {gpu_power} W, GPU Memory Usage: {gpu_mem_used} MB")
self.writer.add_scalar('energy/GPU/Power_Usage_W', gpu_power, 0)
self.writer.add_scalar('energy/GPU/Memory_Usage_MB', gpu_mem_used, 0)
# 항상 CPU 사용량 측정
cpu_usage = psutil.cpu_percent(interval=None) # CPU 사용량 측정
self.cpu_energy_usage.append(cpu_usage)
logger.info(f"CPU Usage: {cpu_usage}%")
self.writer.add_scalar('energy/CPU/Usage_Percentage', cpu_usage, 0)
def stop_monitoring(self):
# GPU 모니터링 종료
if self.use_cuda:
pynvml.nvmlShutdown() # NVML 종료
# CPU 사용량 평균 계산
avg_cpu_energy = sum(self.cpu_energy_usage) / len(self.cpu_energy_usage) if self.cpu_energy_usage else 0
logger.info(f"Average CPU Energy Usage: {avg_cpu_energy}%")
self.writer.add_scalar('energy/CPU_Energy/Avg_Usage_Percentage', avg_cpu_energy, 0)
# TensorBoard writer 닫기
self.writer.close()
def log_profiling_info(self, prof, epoch):
if prof is None:
logger.warning("Profiler has not been initialized.")
return
try:
key_averages = prof.key_averages()
if not key_averages:
logger.error("No profiling data available.")
return
for event in key_averages:
if self.use_cuda:
if hasattr(event, 'cuda_memory_usage'):
self.writer.add_scalar(f"energy/Profiling/{event.key}/cuda_memory_usage", event.cuda_memory_usage, epoch)
if hasattr(event, 'self_cuda_memory_usage'):
self.writer.add_scalar(f"energy/Profiling/{event.key}/self_cuda_memory_usage", event.self_cuda_memory_usage, epoch)
except AssertionError as e:
logger.error(f"Assertion error during profiling: {e}")
except Exception as e:
logger.error(f"Unexpected error during profiling: {e}")
def start_profiling(self, max_epoch, network, train_fn, test_fn, train_loader, test_loader, optimizer):
best_loss = 1e8
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 모델을 GPU 또는 CPU로 이동 (사용 가능 시)
network.to(device)
for epoch in range(max_epoch):
# 에포크마다 프로파일러를 켜기
with profile(
activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA] if torch.cuda.is_available() else [ProfilerActivity.CPU],
schedule=torch.profiler.schedule(wait=1, warmup=1, active=2, repeat=1), # 필요한 구간만 프로파일링
on_trace_ready=tensorboard_trace_handler(self.log_dir), # TensorBoard 핸들러 추가
record_shapes=True,
profile_memory=True,
with_stack=True
) as prof:
self.start_monitoring([os.getpid()])
logger.info(f"Profiler action before start: {prof.current_action}")
# 모델에 따라 FLOPs 또는 SLOPs 계산
if isinstance(network, Quant_VAE):
flops_analyzer = FLOPsCalculator(network, next(iter(train_loader))[0].to(device).shape)
total_flops, total_params = flops_analyzer.calculate_flops_params()
self.writer.add_scalar('energy/FLOPs/Total', total_flops, epoch)
self.writer.add_scalar('energy/Params/Total', total_params, epoch)
elif isinstance(network, IF_VAE):
slops_analyzer = SLOPsCalculator(network, next(iter(train_loader))[0].to(device).shape)
total_slops, total_params = slops_analyzer.calculate_slops_params()
self.writer.add_scalar('energy/SLOPs/Total', total_slops, epoch)
self.writer.add_scalar('energy/Params/Total', total_params, epoch)
# 학습 및 테스트 실행
train_loss = train_fn(network, train_loader, optimizer, epoch, self)
test_loss = test_fn(network, test_loader, epoch, self)
prof.step() # 프로파일러 진행 단계
self.log_profiling_info(prof, epoch)
self.stop_monitoring()
# 모델 상태 저장
torch.save(network.state_dict(), f'{self.checkpoint_dir}/checkpoint.pth')
if test_loss < best_loss:
best_loss = test_loss
torch.save(network.state_dict(), f'{self.checkpoint_dir}/best.pth')
if __name__ == "__main__":
import torch
print(torch.__version__)