-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
57 lines (43 loc) · 1.99 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import keras
from keras.datasets import mnist
from keras import callbacks
def prepare_data(num_classes):
# the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(60000, 784)
x_test = x_test.reshape(10000, 784)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
print('x_train.shape=', x_train.shape)
print('y_train.shape=', y_train.shape)
print('x_test.shape=', x_test.shape)
print('y_test.shape=', y_test.shape)
return x_train, y_train, x_test, y_test
def fit_model(m, kx_train, ky_train, kx_test, ky_test, batch_size=128, max_epochs=1000):
checkpoint = callbacks.ModelCheckpoint(monitor='val_acc',
filepath='checkpoints/model_{epoch:02d}_{val_acc:.3f}.h5',
save_best_only=True)
early_stopping = callbacks.EarlyStopping(monitor='val_acc',
min_delta=0.01,
patience=10,
verbose=1,
mode='max')
reduce_lr = callbacks.ReduceLROnPlateau(monitor='val_acc',
factor=0.5,
patience=10,
min_lr=0.0001,
verbose=1)
m.fit(kx_train,
ky_train,
batch_size=batch_size,
epochs=max_epochs,
verbose=1,
validation_data=(kx_test, ky_test),
callbacks=[checkpoint, early_stopping, reduce_lr])