-
-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathmemory_manager.py
115 lines (97 loc) · 3.76 KB
/
memory_manager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
from qdrant_client import QdrantClient
from qdrant_client.models import Distance, VectorParams, PointStruct
from qdrant_client.http.models import Filter
import uuid
class MemoryManager():
"""
Chatbot memory manager using qdrant
"""
def __init__(self, host: str = "localhost", port: int = 6333, timeout: int = 1000) -> None:
"""
Initialize vector store manager
Parameters
host (str): host of qdrant instance
port (int): port of qdrant instance
timeout (int): timeout in seconds
"""
self.client = QdrantClient(host=host, port=port, timeout=timeout)
def get_collections(self, return_names: bool = True) -> list:
"""
Get all collections
Parameters
return_names (bool): return collection names instead of collection objects
Returns
list: list of collections
"""
collections = self.client.get_collections()
if return_names:
return [collection.name for collection in collections.collections]
return collections.collections
def create_collection(self, name: str = 'long_term_memory', dimension: int = 1536, distance: Distance = Distance.DOT, overwrite: bool = False) -> bool:
"""
Create a collection
Parameters
name (str): name of collection
dimension (int): dimension of vectors
distance (Distance): distance function
overwrite (bool): overwrite collection if it already exists
"""
if overwrite == False:
collections = self.get_collections()
if name in collections:
return False
return self.client.recreate_collection(
collection_name=name,
vectors_config=VectorParams(size=dimension, distance=distance)
)
def get_collection_info(self, name: str = 'long_term_memory') -> dict:
"""
Get collection info
Parameters
name (str): name of collection
Returns
dict: collection info
"""
return self.client.get_collection(name).dict()
def insert_points(self, collection_name: str = 'long_term_memory', points: list = []) -> bool:
"""
Insert points into collection
Parameters
collection_name (str): name of collection
points (list): list of points to insert (must have a vector and an optional payload)
Returns
bool: success
"""
if len(points) < 1:
return
assert all([p.get('vector') is not None for p in points]), "All points must have a vector"
return self.client.upsert(
collection_name=collection_name,
points=[
PointStruct(
id=str(uuid.uuid4()),
payload=p.get('payload') if p.get('payload') is not None else {},
vector=p['vector'],
)
for p in points
],
)
def search_points(self, collection_name: str = 'long_term_memory', vector: list = [], k: int = 5, append_payload: bool = True, filter: Filter = None) -> list:
"""
Search points in collection
Parameters
collection_name (str): name of collection
vector (list): vector to search for
k (int): number of results to return
append_payload (bool): append payload to results
filter (Filter): filter results
Returns
list: list of results
"""
return self.client.search(
collection_name=collection_name,
query_vector=vector,
limit=k,
append_payload=append_payload,
query_filter=filter,
)