-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinfer.py
247 lines (221 loc) · 10.8 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import os
import sys
from argparse import ArgumentParser, Namespace
from src.model.rnn import RNN_Attn
from src.model.transfomer import Transfomer
from src.utils import Vocab
import numpy as np
import pickle
import torch
from tokenizers import Tokenizer, SentencePieceBPETokenizer
from torch.utils.data import Dataset, DataLoader
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import matplotlib.font_manager as fm
import pandas as pd
import json
from tqdm import tqdm
from torch.autograd import Variable
class _tokenizer():
def __init__(self, dataset_type):
self.tokenizer_dir = './dataset/tokenizer/title_bpe'
self.dataset_type = dataset_type
self.model = SentencePieceBPETokenizer(os.path.join(self.tokenizer_dir, "{}-vocab.json".format(self.dataset_type)),\
os.path.join(self.tokenizer_dir, "{}-merges.txt".format(self.dataset_type)))
self.encoder = self.model.get_vocab()
def encode(self, target_str, is_pretokenized=False, add_special_tokens=True):
return self.model.encode(target_str, pair=None, is_pretokenized=False, add_special_tokens=True).ids
def decode(self, target_ids, skip_special_tokens=True):
return self.model.decode(target_ids, skip_special_tokens=True)
def title_tokenize(text, context_length, title_vocab):
token = ["<sos>"] + text.split() + ["<eos>"]
all_tokens = [title_vocab.token_to_idx[i] for i in token]
text = torch.zeros(context_length, dtype=torch.long)
if len(all_tokens) < context_length:
text[:len(all_tokens)] = torch.tensor(all_tokens)
else:
text[:context_length-1] = torch.tensor(all_tokens[:context_length-1])
text[-1] = all_tokens[-1]
return text
def song_tokenize(song, dataset_type, context_length, song_vocab, shuffle=False):
song_token = ["<sos>"] + song + ["<eos>"]
all_tokens = [song_vocab.token_to_idx[i] for i in song_token]
song_seq = torch.zeros(context_length, dtype=torch.long)
if len(all_tokens) < context_length:
song_seq[:len(all_tokens)] = torch.tensor(all_tokens)
else:
song_seq[:context_length-1] = torch.tensor(all_tokens[:context_length-1])
song_seq[-1] = all_tokens[-1]
return song_seq
def decode_song(dataset_type, song_seq):
special_tokens = ['<pad>', '<sos>', '<eos>', '<unk>']
decoded_song_list = []
if dataset_type == 'melon':
gen_dict = json.load(open("./dataset/source/melon/genre_gn_all.json", 'r', encoding='utf8'))
song_meta_df = pd.read_json("./dataset/source/melon/song_meta.json")
for sid in song_seq:
#song_idx = song_vocab.idx_to_token[sid]
song_idx = sid
if song_idx not in special_tokens:
song_meta = song_meta_df.loc[song_idx]
track = song_meta['song_name']
artist = song_meta['artist_name_basket']
tag = song_meta['song_gn_dtl_gnr_basket']
genre = [gen_dict[gen_id] for gen_id in tag]
decoded_song_list.append({'title': track, 'artist': artist, 'genre': genre})
#print(track, artist, genre)
#print("=====")
elif dataset_type == 'mpd':
song_dict={}
data_dir = "./dataset/source/mpd/data"
fname = os.listdir(data_dir)
for file in tqdm(fname):
if file.startswith("mpd.slice.") and file.endswith(".json"):
one_playlist = json.load(open(os.path.join(data_dir,file),'r'))
for ply in one_playlist['playlists']:
if ply['tracks']==[] or ply['name']=='':
continue
for track in ply['tracks']:
track_dict = {}
track_dict['title'] = track['track_name']
track_dict['artist'] = track['artist_name']
song_dict[track['track_uri']] = track_dict
for sid in song_seq:
song_idx = song_vocab.idx_to_token[sid]
if song_idx not in special_tokens:
decoded_song_list.append(song_dict[song_idx])
#print(song_dict[song_idx])
#print("=====")
return decoded_song_list
def _generation(dataset_type, model_type, songs, model, context_length, song_vocab, title_vocab, device):
song_seq = song_tokenize(songs, dataset_type, context_length, song_vocab)
sos_token = title_tokenize('', context_length, title_vocab)
song_seq = song_seq.to(device)
sos_token = sos_token.to(device)
if model_type == 'rnn':
song_seq = torch.unsqueeze(song_seq, 1)
sos_token = torch.unsqueeze(sos_token, 1)[0,:]
elif model_type == 'transfomer':
song_seq = torch.unsqueeze(song_seq, 0)
sos_token = torch.unsqueeze(sos_token, 0)[:,0]
max_len=200
attentions = torch.zeros(max_len, 1, context_length).to(device)
with torch.no_grad():
if model_type == 'rnn':
encoder_output, hidden = model.encoder(song_seq)
elif model_type == 'transfomer':
src_mask = model.make_src_mask(song_seq)
enc_src = model.encoder(song_seq, src_mask)
#vocab_size = model.decoder.output_size
if model_type == 'rnn':
outputs = []
hidden = hidden[:model.decoder.n_layers]
output = Variable(sos_token) # sos
elif model_type == 'transfomer':
trg_indexes = [sos_token]
if model_type == 'rnn':
for t in range(1, max_len):
with torch.no_grad():
output, hidden, attn_weights = model.decoder(output, hidden, encoder_output)
pred_token = output.argmax(1).item()
outputs.append(pred_token)
top1 = output.data.max(1)[1]
output = Variable(top1)
if pred_token == 2:
break
attentions[t-1] = attn_weights
elif model_type == 'transfomer':
for t in range(1, max_len):
with torch.no_grad():
trg_tensor = torch.LongTensor(trg_indexes).unsqueeze(0).to(device)
trg_mask = model.make_trg_mask(trg_tensor)
output, attention = model.decoder(trg_tensor, enc_src, trg_mask, src_mask)
pred_token = output.argmax(2)[:,-1].item()
trg_indexes.append(pred_token)
if pred_token == 2:
break
if model_type == 'rnn':
generative_title = [title_vocab.idx_to_token[i] for i in outputs]
return generative_title, attentions[:len(generative_title)-1]
elif model_type == 'transfomer':
generative_title = [title_vocab.idx_to_token[i] for i in trg_indexes[1:]]
return generative_title, attention.squeeze(0)[:,1:len(generative_title)]
def main(args):
save_path = f"exp/{args.dataset_type}/{args.model}/{args.tokenzier}/s:{args.shuffle}_epos:{args.e_pos}"
title_tokenizer = _tokenizer(dataset_type = args.dataset_type)
song_vocab = pickle.load(open(os.path.join("./dataset/tokenizer/track", args.dataset_type + "_vocab.pkl"), mode="rb"))
title_vocab = pickle.load(open(os.path.join("./dataset/tokenizer/title_split", args.dataset_type + "_vocab.pkl"), mode="rb"))
if args.tokenzier == "white":
input_size = len(song_vocab)
output_size= len(title_vocab)
else:
raise ValueError("Current model only support white space tokenizer")
if args.model == "rnn":
model = RNN_Attn(
input_size = input_size,
output_size= output_size,
embed_size= args.embed_size,
hidden_size= args.hidden_size,
e_layers= args.e_layers,
d_layers= args.d_layers,
dropout= args.dropout,
teacher_forcing_ratio = args.teacher_forcing_ratio
)
elif args.model == "transfomer":
model = Transfomer(
input_size = input_size,
output_size= output_size,
hidden_size= args.embed_size,
e_layers= args.e_layers,
d_layers= args.d_layers,
heads = args.heads,
pf_dim = args.hidden_size,
dropout= args.dropout,
e_pos = args.e_pos,
device = args.gpus
)
device = f"cuda:{args.gpus}"
state_dict = torch.load(os.path.join(save_path, "best.ckpt"), map_location=torch.device(device))
new_state_map = {model_key: model_key.split("model.")[1] for model_key in state_dict.get("state_dict").keys()}
new_state_dict = {new_state_map[key]: value for (key, value) in state_dict.get("state_dict").items() if key in new_state_map.keys()}
model.load_state_dict(new_state_dict)
model = model.to(device)
model.eval()
fl = torch.load(os.path.join(args.split_path, args.dataset_type, "test.pt"))
inference = {}
for item in tqdm(fl):
gen_t, _ = _generation(args.dataset_type, args.model, item['songs'], model, args.context_length, song_vocab, title_vocab, args.gpus)
inference[item['pid']] = {
"ground_truth": item['nrm_plylst_title'],
"prediction": " ".join(gen_t)
}
# songs = [song_vocab.idx_to_token[i] for i in songs]
# decoded_songs = decode_song(dataset_type, songs)
# decoded_songs = decoded_songs[:context_length] if len(decoded_songs) > context_length else decoded_songs
# decoded_songs_list = list(map(lambda x: x['title']+' by '+' '.join(x['artist']), decoded_songs))
with open(os.path.join(save_path, "inference.json"), mode="w", encoding='utf-8') as io:
json.dump(inference, io, ensure_ascii=False, indent=4)
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument("--split_path", default="./dataset/split", type=str)
parser.add_argument("--tid", default="0", type=str)
parser.add_argument("--model", default="transfomer", type=str)
parser.add_argument("--tokenzier", default="white", type=str)
parser.add_argument("--dataset_type", default="melon", type=str)
parser.add_argument("--context_length", default=64, type=int)
parser.add_argument("--shuffle", default=True, type=bool)
# model
parser.add_argument("--embed_size", default=128, type=int)
parser.add_argument("--hidden_size", default=256, type=int)
parser.add_argument("--e_layers", default=3, type=int)
parser.add_argument("--d_layers", default=3, type=int)
parser.add_argument("--dropout", default=0.1, type=float)
parser.add_argument("--e_pos", default=False, type=bool)
parser.add_argument("--d_pos", default=True, type=bool)
parser.add_argument("--heads", default=8, type=int)
parser.add_argument("--pf_dim", default=256, type=int)
parser.add_argument("--teacher_forcing_ratio", default=0.5, type=float)
# pipeline
parser.add_argument("--gpus", default=0, type=int)
args = parser.parse_args()
main(args)