forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcache_kernels.cu
390 lines (349 loc) · 16.4 KB
/
cache_kernels.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
#include <torch/all.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include "cuda_compat.h"
#include "dispatch_utils.h"
#ifdef USE_ROCM
#include "quantization/fp8/amd/quant_utils.cuh"
#else
#include "quantization/fp8/nvidia/quant_utils.cuh"
#endif
#include <algorithm>
#include <cassert>
#include <map>
#include <vector>
#ifdef USE_ROCM
#include <hip/hip_bf16.h>
typedef __hip_bfloat16 __nv_bfloat16;
#endif
void swap_blocks(torch::Tensor& src, torch::Tensor& dst,
const torch::Tensor& block_mapping) {
torch::Device src_device = src.device();
torch::Device dst_device = dst.device();
cudaMemcpyKind memcpy_type;
if (src_device.is_cuda() && dst_device.is_cuda()) {
TORCH_CHECK(src_device.index() == dst_device.index(),
"src and dst must be on the same GPU");
memcpy_type = cudaMemcpyDeviceToDevice;
} else if (src_device.is_cuda() && dst_device.is_cpu()) {
memcpy_type = cudaMemcpyDeviceToHost;
} else if (src_device.is_cpu() && dst_device.is_cuda()) {
memcpy_type = cudaMemcpyHostToDevice;
} else {
TORCH_CHECK(false, "Invalid device combination");
}
// NOTE(youkaichao): keep in mind that `block_mapping` should be
// a cpu tensor, otherwise every `item` call will require a gpu-cpu
// synchronization.
TORCH_CHECK(block_mapping.device().is_cpu(), "block_mapping must be on CPU");
char* src_ptr = static_cast<char*>(src.data_ptr());
char* dst_ptr = static_cast<char*>(dst.data_ptr());
const int64_t block_size_in_bytes = src.element_size() * src[0].numel();
const at::cuda::OptionalCUDAGuard device_guard(
src_device.is_cuda() ? src_device : dst_device);
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
// NOTE(woosuk): This can be slow if the number of blocks is large.
const int64_t num_blocks = block_mapping.size(0);
for (size_t i = 0; i < num_blocks; i++) {
int64_t src_block_number = block_mapping[i][0].item<int64_t>();
int64_t dst_block_number = block_mapping[i][1].item<int64_t>();
int64_t src_offset = src_block_number * block_size_in_bytes;
int64_t dst_offset = dst_block_number * block_size_in_bytes;
cudaMemcpyAsync(dst_ptr + dst_offset, src_ptr + src_offset,
block_size_in_bytes, memcpy_type, stream);
}
}
namespace vllm {
// Grid: (num_layers, num_pairs)
template <typename scalar_t>
__global__ void copy_blocks_kernel(int64_t* key_cache_ptrs,
int64_t* value_cache_ptrs,
const int64_t* __restrict__ block_mapping,
const int numel_per_block) {
const int layer_idx = blockIdx.x;
const int pair_idx = blockIdx.y;
scalar_t* key_cache = reinterpret_cast<scalar_t*>(key_cache_ptrs[layer_idx]);
scalar_t* value_cache =
reinterpret_cast<scalar_t*>(value_cache_ptrs[layer_idx]);
int64_t src_block_number = block_mapping[2 * pair_idx];
int64_t dst_block_number = block_mapping[2 * pair_idx + 1];
const int64_t src_block_offset = src_block_number * numel_per_block;
const int64_t dst_block_offset = dst_block_number * numel_per_block;
for (int i = threadIdx.x; i < numel_per_block; i += blockDim.x) {
int64_t src_offset = src_block_offset + i;
int64_t dst_offset = dst_block_offset + i;
key_cache[dst_offset] = key_cache[src_offset];
}
for (int i = threadIdx.x; i < numel_per_block; i += blockDim.x) {
int64_t src_offset = src_block_offset + i;
int64_t dst_offset = dst_block_offset + i;
value_cache[dst_offset] = value_cache[src_offset];
}
}
} // namespace vllm
// Note: the key_caches and value_caches vectors are constant but
// not the Tensors they contain. The vectors need to be const refs
// in order to satisfy pytorch's C++ operator registration code.
void copy_blocks(std::vector<torch::Tensor> const& key_caches,
std::vector<torch::Tensor> const& value_caches,
const torch::Tensor& block_mapping) {
int num_layers = key_caches.size();
TORCH_CHECK(num_layers == value_caches.size());
if (num_layers == 0) {
return;
}
torch::Device cache_device = key_caches[0].device();
TORCH_CHECK(cache_device.is_cuda());
// Create data structures for the kernel.
// Create an array of pointers to the key and value caches.
int64_t key_cache_ptrs[num_layers];
int64_t value_cache_ptrs[num_layers];
for (int layer_idx = 0; layer_idx < num_layers; ++layer_idx) {
key_cache_ptrs[layer_idx] =
reinterpret_cast<int64_t>(key_caches[layer_idx].data_ptr());
value_cache_ptrs[layer_idx] =
reinterpret_cast<int64_t>(value_caches[layer_idx].data_ptr());
}
// block_mapping is a 2D tensor with shape (num_pairs, 2).
int num_pairs = block_mapping.size(0);
// Move the data structures to the GPU.
// NOTE: This synchronizes the CPU and GPU.
torch::Tensor key_cache_ptrs_tensor =
torch::from_blob(key_cache_ptrs, {num_layers}, torch::kInt64)
.to(cache_device);
torch::Tensor value_cache_ptrs_tensor =
torch::from_blob(value_cache_ptrs, {num_layers}, torch::kInt64)
.to(cache_device);
// Launch the kernel.
const int numel_per_block = key_caches[0][0].numel();
dim3 grid(num_layers, num_pairs);
dim3 block(std::min(1024, numel_per_block));
const at::cuda::OptionalCUDAGuard device_guard(cache_device);
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_AND_BYTE_TYPES(
key_caches[0].scalar_type(), "copy_blocks_kernel", ([&] {
vllm::copy_blocks_kernel<scalar_t><<<grid, block, 0, stream>>>(
key_cache_ptrs_tensor.data_ptr<int64_t>(),
value_cache_ptrs_tensor.data_ptr<int64_t>(),
block_mapping.data_ptr<int64_t>(), numel_per_block);
}));
}
namespace vllm {
template <typename scalar_t, typename cache_t, Fp8KVCacheDataType kv_dt>
__global__ void reshape_and_cache_kernel(
const scalar_t* __restrict__ key, // [num_tokens, num_heads, head_size]
const scalar_t* __restrict__ value, // [num_tokens, num_heads, head_size]
cache_t* __restrict__ key_cache, // [num_blocks, num_heads, head_size/x,
// block_size, x]
cache_t* __restrict__ value_cache, // [num_blocks, num_heads, head_size,
// block_size]
const int64_t* __restrict__ slot_mapping, // [num_tokens]
const int key_stride, const int value_stride, const int num_heads,
const int head_size, const int block_size, const int x, const float k_scale,
const float v_scale) {
const int64_t token_idx = blockIdx.x;
const int64_t slot_idx = slot_mapping[token_idx];
if (slot_idx < 0) {
// Padding token that should be ignored.
return;
}
const int64_t block_idx = slot_idx / block_size;
const int64_t block_offset = slot_idx % block_size;
const int n = num_heads * head_size;
for (int i = threadIdx.x; i < n; i += blockDim.x) {
const int64_t src_key_idx = token_idx * key_stride + i;
const int64_t src_value_idx = token_idx * value_stride + i;
const int head_idx = i / head_size;
const int head_offset = i % head_size;
const int x_idx = head_offset / x;
const int x_offset = head_offset % x;
const int64_t tgt_key_idx =
block_idx * num_heads * (head_size / x) * block_size * x +
head_idx * (head_size / x) * block_size * x + x_idx * block_size * x +
block_offset * x + x_offset;
const int64_t tgt_value_idx =
block_idx * num_heads * head_size * block_size +
head_idx * head_size * block_size + head_offset * block_size +
block_offset;
scalar_t tgt_key = key[src_key_idx];
scalar_t tgt_value = value[src_value_idx];
if constexpr (kv_dt == Fp8KVCacheDataType::kAuto) {
key_cache[tgt_key_idx] = tgt_key;
value_cache[tgt_value_idx] = tgt_value;
} else {
key_cache[tgt_key_idx] =
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(tgt_key, k_scale);
value_cache[tgt_value_idx] =
fp8::scaled_convert<cache_t, scalar_t, kv_dt>(tgt_value, v_scale);
}
}
}
template <typename scalar_t>
__global__ void reshape_and_cache_flash_kernel(
const scalar_t* __restrict__ key, // [num_tokens, num_heads, head_size]
const scalar_t* __restrict__ value, // [num_tokens, num_heads, head_size]
scalar_t* __restrict__ k_cache, // [num_blocks, block_size, num_heads,
// head_size]
scalar_t* __restrict__ v_cache, // [num_blocks, block_size, num_heads,
// head_size]
const int64_t* __restrict__ slot_mapping, // [num_tokens]
const int block_stride, const int key_stride, const int value_stride,
const int num_heads, const int head_size, const int block_size) {
const int64_t token_idx = blockIdx.x;
const int64_t slot_idx = slot_mapping[token_idx];
// NOTE: slot_idx can be -1 if the token is padded
if (slot_idx < 0) {
return;
}
const int64_t block_idx = slot_idx / block_size;
const int64_t block_offset = slot_idx % block_size;
const int n = num_heads * head_size;
for (int i = threadIdx.x; i < n; i += blockDim.x) {
const int64_t src_key_idx = token_idx * key_stride + i;
const int64_t src_value_idx = token_idx * value_stride + i;
const int head_idx = i / head_size;
const int head_offset = i % head_size;
const int64_t tgt_value_idx = block_idx * block_stride +
block_offset * num_heads * head_size +
head_idx * head_size + head_offset;
k_cache[tgt_value_idx] = key[src_key_idx];
v_cache[tgt_value_idx] = value[src_value_idx];
}
}
} // namespace vllm
// KV_T is the stored data type of kv-cache.
// CACHE_T is the data type of key and value tensors.
// KV_DTYPE is the real data type of kv-cache.
#define CALL_RESHAPE_AND_CACHE(KV_T, CACHE_T, KV_DTYPE) \
vllm::reshape_and_cache_kernel<KV_T, CACHE_T, KV_DTYPE> \
<<<grid, block, 0, stream>>>( \
reinterpret_cast<KV_T*>(key.data_ptr()), \
reinterpret_cast<KV_T*>(value.data_ptr()), \
reinterpret_cast<CACHE_T*>(key_cache.data_ptr()), \
reinterpret_cast<CACHE_T*>(value_cache.data_ptr()), \
slot_mapping.data_ptr<int64_t>(), key_stride, value_stride, \
num_heads, head_size, block_size, x, k_scale, v_scale);
void reshape_and_cache(
torch::Tensor& key, // [num_tokens, num_heads, head_size]
torch::Tensor& value, // [num_tokens, num_heads, head_size]
torch::Tensor&
key_cache, // [num_blocks, num_heads, head_size/x, block_size, x]
torch::Tensor&
value_cache, // [num_blocks, num_heads, head_size, block_size]
torch::Tensor& slot_mapping, // [num_tokens]
const std::string& kv_cache_dtype, const double k_scale,
const double v_scale) {
int num_tokens = key.size(0);
int num_heads = key.size(1);
int head_size = key.size(2);
int block_size = key_cache.size(3);
int x = key_cache.size(4);
int key_stride = key.stride(0);
int value_stride = value.stride(0);
dim3 grid(num_tokens);
dim3 block(std::min(num_heads * head_size, 512));
const at::cuda::OptionalCUDAGuard device_guard(device_of(key));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
DISPATCH_BY_KV_CACHE_DTYPE(key.dtype(), kv_cache_dtype,
CALL_RESHAPE_AND_CACHE)
}
void reshape_and_cache_flash(
torch::Tensor& key, // [num_tokens, num_heads, head_size]
torch::Tensor& value, // [num_tokens, num_heads, head_size]
torch::Tensor& k_cache, // [num_blocks, block_size, num_heads, head_size]
torch::Tensor& v_cache, // [num_blocks, block_size, num_heads, head_size]
torch::Tensor& slot_mapping, // [num_tokens]
const std::string& kv_cache_dtype) {
// FIXME: only support auto datatype, does not support fp8
if (kv_cache_dtype != "auto") {
TORCH_CHECK(false, "Unsupported data type of kv cache: ", kv_cache_dtype);
}
int num_tokens = key.size(0);
int num_heads = key.size(1);
int head_size = key.size(2);
int block_size = k_cache.size(1);
int key_stride = key.stride(0);
int value_stride = value.stride(0);
int block_stride = k_cache.stride(0);
TORCH_CHECK(k_cache.stride(0) == v_cache.stride(0));
dim3 grid(num_tokens);
dim3 block(std::min(num_heads * head_size, 512));
const at::cuda::OptionalCUDAGuard device_guard(device_of(key));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
key.scalar_type(), "reshape_and_cache_flash", [&] {
vllm::reshape_and_cache_flash_kernel<scalar_t>
<<<grid, block, 0, stream>>>(
key.data_ptr<scalar_t>(), value.data_ptr<scalar_t>(),
k_cache.data_ptr<scalar_t>(), v_cache.data_ptr<scalar_t>(),
slot_mapping.data_ptr<int64_t>(), block_stride, key_stride,
value_stride, num_heads, head_size, block_size);
});
}
namespace vllm {
template <typename Tout, typename Tin, Fp8KVCacheDataType kv_dt>
__global__ void convert_fp8_kernel(const Tin* __restrict__ src_cache,
Tout* __restrict__ dst_cache,
const float scale,
const int64_t block_stride) {
const int64_t block_idx = blockIdx.x;
for (int i = threadIdx.x; i < block_stride; i += blockDim.x) {
int64_t idx = block_idx * block_stride + i;
dst_cache[idx] =
fp8::scaled_convert<Tout, Tin, kv_dt>(src_cache[idx], scale);
}
}
} // namespace vllm
#define CALL_CONVERT_FP8(Tout, Tin, KV_DTYPE) \
vllm::convert_fp8_kernel<Tout, Tin, KV_DTYPE><<<grid, block, 0, stream>>>( \
reinterpret_cast<Tin*>(src_cache.data_ptr()), \
reinterpret_cast<Tout*>(dst_cache.data_ptr()), scale, block_stride);
// Only for testing.
void convert_fp8(torch::Tensor& dst_cache, torch::Tensor& src_cache,
const double scale, const std::string& kv_cache_dtype) {
torch::Device src_device = src_cache.device();
torch::Device dst_device = dst_cache.device();
TORCH_CHECK(src_device.is_cuda(), "src must be on a GPU")
TORCH_CHECK(dst_device.is_cuda(), "dst must be on a GPU")
TORCH_CHECK(src_device.index() == dst_device.index(),
"src and dst must be on the same GPU");
at::cuda::OptionalCUDAGuard device_guard(src_device);
int64_t num_blocks = src_cache.size(0);
int64_t block_stride = src_cache.stride(0);
dim3 grid(num_blocks);
dim3 block(std::min(block_stride, int64_t(512)));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
if (kv_cache_dtype == "auto") {
if (src_cache.dtype() == at::ScalarType::Float) {
CALL_CONVERT_FP8(uint8_t, float, vllm::Fp8KVCacheDataType::kAuto);
} else if (src_cache.dtype() == at::ScalarType::Half) {
CALL_CONVERT_FP8(uint8_t, uint16_t, vllm::Fp8KVCacheDataType::kAuto);
} else if (src_cache.dtype() == at::ScalarType::BFloat16) {
CALL_CONVERT_FP8(uint8_t, __nv_bfloat16, vllm::Fp8KVCacheDataType::kAuto);
} else if (dst_cache.dtype() == at::ScalarType::Float) {
CALL_CONVERT_FP8(float, uint8_t, vllm::Fp8KVCacheDataType::kAuto);
} else if (dst_cache.dtype() == at::ScalarType::Half) {
CALL_CONVERT_FP8(uint16_t, uint8_t, vllm::Fp8KVCacheDataType::kAuto);
} else if (dst_cache.dtype() == at::ScalarType::BFloat16) {
CALL_CONVERT_FP8(__nv_bfloat16, uint8_t, vllm::Fp8KVCacheDataType::kAuto);
}
} else if (kv_cache_dtype == "fp8" || kv_cache_dtype == "fp8_e4m3") {
if (src_cache.dtype() == at::ScalarType::Float) {
CALL_CONVERT_FP8(uint8_t, float, vllm::Fp8KVCacheDataType::kFp8E4M3);
} else if (src_cache.dtype() == at::ScalarType::Half) {
CALL_CONVERT_FP8(uint8_t, uint16_t, vllm::Fp8KVCacheDataType::kFp8E4M3);
} else if (src_cache.dtype() == at::ScalarType::BFloat16) {
CALL_CONVERT_FP8(uint8_t, __nv_bfloat16,
vllm::Fp8KVCacheDataType::kFp8E4M3);
} else if (dst_cache.dtype() == at::ScalarType::Float) {
CALL_CONVERT_FP8(float, uint8_t, vllm::Fp8KVCacheDataType::kFp8E4M3);
} else if (dst_cache.dtype() == at::ScalarType::Half) {
CALL_CONVERT_FP8(uint16_t, uint8_t, vllm::Fp8KVCacheDataType::kFp8E4M3);
} else if (dst_cache.dtype() == at::ScalarType::BFloat16) {
CALL_CONVERT_FP8(__nv_bfloat16, uint8_t,
vllm::Fp8KVCacheDataType::kFp8E4M3);
}
} else {
TORCH_CHECK(false, "Unsupported data type: ", kv_cache_dtype);
}
}