forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathampere_tensorop_conv2dfprop.cu
871 lines (699 loc) · 27.4 KB
/
ampere_tensorop_conv2dfprop.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
/***************************************************************************************************
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/**
This example shows how to run CUTLASS's convolution kernels
based on the Implicit GEMM algorithm, that use the Tensor Cores
on an NVIDIA Ampere GPU.
Writing a single high-performance convolution kernel is hard enough,
let alone writing kernels that perform well for multiple problem sizes
and use good software abstractions.
CUTLASS provides simplified abstractions
to compose multiple sections of a convolution kernel.
When used properly, the kernels can reach peak GPU performance.
CUTLASS divides a kernel into hierarchical composable sections
for each level of the GPU hardware hierarchy:
thread, warp, and threadblock.
Each section computes on its own tile shape,
with each higher level's tile shape
being composed from lower-level tile shapes.
Multiple thread tiles (the tile shape each thread computes)
can be used to form warp tiles (the tile shape each warp computes),
and multiple warp tiles can be used to compute threadblock tiles
(the tile shape computed by a threadblock).
In this example, we split variable initialization into two parts.
1. Setting up data properties: describes how tensors are laid out in the memory
and how the kernel can view them (logical to physical mapping)
2. Setting up computation properties: describes how the above tensors
will be used to compute the output of convolution
We begin by setting up the data types
of all the input and output elements of a convolution.
A convolution computes
C = alpha * Conv2dFprop(A, B) + beta * C,
so we set up data types for the input tensor A,
weights tensor B, output tensor C,
and the scaling factors alpha and beta.
CUTLASS divides the convolution into two parts:
the "mainloop" that computes X = Conv2dFprop(A, B),
and the "epilogue" that computes C = alpha * X + beta * C.
The epilogue is an element-wise operation on X and C.
In this case, it is a linear combination,
but other epilogues are possible.
In this example, we want
* the scaling factors alpha and beta to be float,
* the elements of A and B to be cutlass::half_t
(a 16-bit floating-point type),
* the elements of C to be float, and
* intermediate sums to be accumulated in float.
We convey this to the CUTLASS kernel
by setting the following template parameters.
* alpha and beta: ElementComputeEpilogue = float
* Elements of input tensor A: ElementInputA = cutlass::half_t
* Elements of input tensor B: ElementInputB = cutlass::half_t
* Elements of output tensor C: ElementOutput = float
* Accumulation type: ElementAccumulator = float
Next, we describe the layout of the input and output tensors.
We convey this to the CUTLASS kernel
by setting the following template parameters.
* Layout of input tensor A: LayoutInputA = TensorNHWC
* Layout of input tensor B: LayoutInputB = TensorNHWC
* Layout of output tensor C: LayoutOutput = TensorNHWC
After that, we set up rules to compute the epilogue.
The epilogue in this case is a simple linear combination
C = alpha * X + beta * C.
Thus, we set the kernel's template parameter EpilogueOp
to LinearCombination. LinearCombination itself
has template parameters:
* the element type of the output tensor (ElementOutput),
* the number of elements per vector memory access (8),
* the data type of the accumulator (ElementAccumulator),
* and the data type used to compute the linear combination
(ElementComputeEpilogue).
We then define the tile shapes
that each level of the computation uses.
We define these as types that encode the tile shapes
as compile-time integer values.
Each shape expresses the dimensions M x N x K.
Here, the letters refer to the dimensions
of a matrix-matrix multiply.
* ThreadblockShape defines the threadblock tile shape
as 128 x 128 x 64.
* WarpShape defines the warp tile shape as 64 x 64 x 64.
* InstructionShape defines the MMA
(matrix multiply-accumulate) operation shape
as 16 x 8 x 16.
These types become template arguments
of the kernel properties type
cutlass::conv::kernel::DefaultConv2dFprop.
The kernel uses these shapes to deduce
the number of threads needed per threadblock,
the required amount of shared memory,
the internal layouts needed to access
shared memory without bank conflicts,
and many other properties that the kernel needs
for good performance.
CUTLASS deduces all these properties automatically,
so that users don't have to.
DefaultConv2dFprop accepts other template parameters
that describe things like the target CUDA SM architecture.
CUTLASS also supports multiple MMA pipelines in a threadblock.
An MMA pipeline constitutes the whole process
of loading input data from global memory to shared memory,
loading data from shared memory to registers,
doing matrix multiplication,
and storing the result to global memory.
The below flow sequence shows a typical MMA multistage pipeline
(see include/cutlass/conv/threadblock/implicit_gemm_multistage.h).
tensor in global memory
--cp_async-->
tile in shared memory
--smem loads-->
registers
--mma-->
registers
--global stores-->
output to global memory
On NVIDIA Ampere, the kernel uses `cp_async`
to build a multistage software pipeline.
This helps it better hide latency.
At this point, we can define the actual CUTLASS kernel type
as the alias ImplicitGemm, a specialization of
cutlass::conv::device::ImplicitGemmConvolution.
The latter accepts the kernel properties type alias
Conv2dFpropKernel as its one template argument.
This example then sets up a test problem
and arguments to the kernel.
We use CUTLASS utilities to allocate
the input and output tensors
and fill them with sample input data.
We then create the kernel arguments
as an instance of ImplicitGemm::Arguments.
The arguments include
the problem size (N = 1, H = 64, W = 64, C = 128),
filter size (K = 64, R = 3, S = 3, C = 128),
padding, strides, dilation, tensors, alpha, beta,
and the split k-dimension factor.
We also query CUTLASS if the kernel we instantiated
requires any memory for scratch space.
If yes, we reserve scratch space and pass it along
with other arguments to initialize the CUTLASS kernel.
After lauching the CUTLASS kernel, this example runs
a reference convolution kernel (from CUTLASS utilities)
to check correctness.
*/
#include <iostream>
#include <fstream>
#include <sstream>
#include "cutlass/cutlass.h"
#include "cutlass/gemm/device/gemm.h"
#include "cutlass/conv/kernel/default_conv2d_fprop.h"
#include "cutlass/conv/device/implicit_gemm_convolution.h"
#include "cutlass/util/command_line.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/reference/device/gemm.h"
#include "cutlass/util/reference/host/tensor_compare.h"
#include "cutlass/util/reference/host/tensor_copy.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "cutlass/util/reference/host/convolution.h"
#include "cutlass/util/tensor_view_io.h"
#include "helper.h"
// Data types for input and output tensors
// and computation between elements
using ElementAccumulator = float; // Data type of accumulator
using ElementComputeEpilogue = float; // Data type of epilogue computation (alpha, beta)
using ElementInputA = cutlass::half_t; // Data type of elements in input tensor
using ElementInputB = cutlass::half_t; // Data type of elements in input tensor
using ElementOutput = float; // Data type of elements in output tensor
using LayoutInputA = cutlass::layout::TensorNHWC;
using LayoutInputB = cutlass::layout::TensorNHWC;
using LayoutOutput = cutlass::layout::TensorNHWC;
// Whether to use tensor cores or regular SIMT cores on GPU SM
using MMAOp = cutlass::arch::OpClassTensorOp;
// SM architecture number
using SmArch = cutlass::arch::Sm80;
// Threadblock tile shape
using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 64>;
// Warp tile shape
using WarpShape = cutlass::gemm::GemmShape<64, 64, 64>;
// MMA (Tensor Core instruction, in this case) tile shape
using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>;
// How the kernel schedules threadblocks
using SwizzleThreadBlock = cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>;
// Number of pipeline stages to use
constexpr int NumStages = 3;
// Which iterator algorithm to use: Analytic or Optimized
static cutlass::conv::IteratorAlgorithm const IteratorAlgorithm = cutlass::conv::IteratorAlgorithm::kOptimized;
// Is the output packed or strided
// Use kStride if using strided output
static cutlass::conv::StrideSupport const OutputStride = cutlass::conv::StrideSupport::kUnity;
// The epilogue part of the kernel
using EpilogueOp = cutlass::epilogue::thread::LinearCombination<
ElementOutput, // Data type of output matrix.
128 / cutlass::sizeof_bits<ElementOutput>::value, // The number of elements per vectorized
// memory access. This becomes the vector width of
// math instructions in the epilogue too.
ElementAccumulator, // Data type of accumulator
ElementComputeEpilogue>; // Data type for alpha/beta in linear combination
// Kernel properties type
using Conv2dFpropKernel = typename cutlass::conv::kernel::DefaultConv2dFprop<
ElementInputA, LayoutInputA,
ElementInputB, LayoutInputB,
ElementOutput, LayoutOutput,
ElementAccumulator,
MMAOp,
SmArch,
ThreadblockShape,
WarpShape,
InstructionShape,
EpilogueOp,
SwizzleThreadBlock,
NumStages,
cutlass::arch::OpMultiplyAdd,
IteratorAlgorithm,
OutputStride
>::Kernel;
// Type of the actual kernel
using ImplicitGemm = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel>;
/////////////////////////////////////////////////////////////////////////////////////////////////
// Command line options parsing
struct Options {
bool help;
cutlass::Tensor4DCoord input_size;
cutlass::Tensor4DCoord filter_size;
cutlass::Tensor4DCoord padding;
cutlass::MatrixCoord conv_stride;
cutlass::MatrixCoord dilation;
bool reference_check;
bool measure_performance;
int iterations;
bool save_workspace;
ElementComputeEpilogue alpha;
ElementComputeEpilogue beta;
bool benchmark;
std::string tag;
Options():
help(false),
input_size(1, 32, 32, 32),
filter_size(32, 3, 3, 32),
padding(1, 1, 1, 1),
conv_stride(1, 1),
dilation(1, 1),
reference_check(false),
measure_performance(true),
iterations(20),
save_workspace(false),
alpha(1),
beta(0),
benchmark(false) { }
// Verify that the problem size is compatible with CUTLASS's convolution implementation
bool valid() {
//
// CUTLASS attempts to load 128b vectors of cutlass::half_t (F16) elements. Consequently,
// all pointers, strides, and tensor extents must be divisible by 8 elements.
//
int const kAlignment = 8;
if ((input_size.c() % kAlignment) ||
(filter_size.n() % kAlignment)) {
// misaligned tensors
return false;
}
// Invalid padding
if ((padding.h() != filter_size.h() / 2) ||
(padding.w() != filter_size.w() / 2)) {
return false;
}
return true;
}
/// Update input and filter sizes
void update(
cutlass::Tensor4DCoord input_size,
cutlass::Tensor4DCoord filter_size) {
this->input_size = input_size;
this->filter_size = filter_size;
padding.n() = filter_size.h() / 2;
padding.h() = filter_size.h() / 2;
padding.w() = filter_size.w() / 2;
padding.c() = filter_size.w() / 2;
}
// Parse command-line arguments
void parse(int argc, char const **args) {
cutlass::CommandLine cmd(argc, args);
if (cmd.check_cmd_line_flag("help")) {
help = true;
}
if (cmd.check_cmd_line_flag("ref-check")) {
reference_check = true;
}
if (cmd.check_cmd_line_flag("perf-check")) {
measure_performance = true;
}
if (cmd.check_cmd_line_flag("save-workspace")) {
save_workspace = true;
}
if (cmd.check_cmd_line_flag("benchmark")) {
benchmark = true;
}
cmd.get_cmd_line_argument("n", input_size.n());
cmd.get_cmd_line_argument("h", input_size.h());
cmd.get_cmd_line_argument("w", input_size.w());
cmd.get_cmd_line_argument("c", input_size.c());
cmd.get_cmd_line_argument("k", filter_size.n());
cmd.get_cmd_line_argument("r", filter_size.h());
cmd.get_cmd_line_argument("s", filter_size.w());
filter_size.c() = input_size.c();
cmd.get_cmd_line_argument("alpha", alpha);
cmd.get_cmd_line_argument("beta", beta);
cmd.get_cmd_line_argument("iterations", iterations);
cmd.get_cmd_line_argument("tag", tag);
if (filter_size.h() == 3 && filter_size.w() == 3) {
padding = {1, 1, 1, 1};
}
else {
filter_size.h() = 1;
filter_size.w() = 1;
padding = {0, 0, 0, 0};
}
}
/// Print an explanation of the command-line arguments
std::ostream & print_usage(std::ostream &out) const {
out << "16_ampere_tensorop_conv2dfprop example\n\n"
<< " This example uses Ampere's Tensor Core operators on F16 data types\n"
<< " to compute forward convolution on tensors of layout NHWC.\n\n"
<< "Options:\n\n"
<< " --help If specified, displays this usage statement.\n\n"
<< " --n=<int> Input tensor extent N\n"
<< " --h=<int> Input tensor extent H\n"
<< " --w=<int> Input tensor extent W\n"
<< " --c=<int> Input tensor extent C\n"
<< " --k=<int> Filter extent K\n"
<< " --r=<int> Filter extent R\n"
<< " --s=<int> Filter extent S\n\n"
<< " --alpha=<float> Epilogue scalar alpha\n"
<< " --beta=<float> Epilogue scalar beta\n\n"
<< " --ref-check If set (true), reference check on the host is computed\n"
<< " --perf-check If set (true), performance is measured.\n"
<< " --benchmark If set (true), performance benchmarking on several layers and batch-size.\n"
<< " --iterations=<int> Number of profiling iterations to perform.\n"
<< " --save-workspace If set, workspace is written to a text file.\n"
<< " --tag=<string> String to replicate across the first column in the results table\n";
out << "\n\nExamples:\n\n"
<< "$ ./examples/16_ampere_tensorop_conv2dfprop/16_ampere_tensorop_conv2dfprop --n=32 --h=224 --w=224 --c=128 --k=256 --r=1 --s=1\n\n"
<< "$ ./examples/16_ampere_tensorop_conv2dfprop/16_ampere_tensorop_conv2dfprop --n=1 --h=224 --w=224 --c=32 --k=32 --r=3 --s=3 --ref-check\n\n";
return out;
}
/// Computes the output tensor size (NPQK)
cutlass::Tensor4DCoord output_size() const {
return cutlass::Tensor4DCoord(
input_size.n(),
(input_size.h() + padding.n() + padding.h() - filter_size.h()) / conv_stride.row() + 1,
(input_size.w() + padding.w() + padding.c() - filter_size.w()) / conv_stride.column() + 1,
filter_size.n());
}
/// Compute performance in Gflop/s
///
/// Gflop/s stands for billions (10^9) of
/// floating-point operations per second (Gflop/s).
double gflops(double runtime_s) const {
// Number of multiply-adds = NPQK * CRS
int64_t fmas = output_size().product() * int64_t(filter_size.h() * filter_size.w() * filter_size.c());
// Two flops per multiply-add
return 2.0 * double(fmas) / double(1.0e9) / runtime_s;
}
};
struct Result {
double runtime_ms;
double gflops;
cutlass::Status status;
cutlass::Status reference_check;
cudaError_t error;
Result():
runtime_ms(0),
gflops(0),
status(cutlass::Status::kSuccess),
reference_check(cutlass::Status::kInvalid),
error(cudaSuccess) { }
static std::ostream& print_header(std::ostream &out, Options const &options) {
if (!options.tag.empty()) {
out << "Name,";
}
out << "Layer,N,H,W,C,K,R,S,Runtime,GFLOPs";
return out;
}
std::ostream & print(std::ostream &out, int idx, Options const &options) {
if (!options.tag.empty()) {
out << options.tag << ",";
}
out
<< "conv_" << idx << ","
<< options.input_size.n() << ","
<< options.input_size.h() << ","
<< options.input_size.w() << ","
<< options.input_size.c() << ","
<< options.filter_size.n() << ","
<< options.filter_size.h() << ","
<< options.filter_size.w() << ","
<< runtime_ms << ","
<< gflops;
return out;
}
};
/// Runs one benchmark
Result profile_convolution(Options const &options) {
Result result;
//
// Allocate host-device tensors using the CUTLASS Utilities.
//
cutlass::HostTensor<ElementInputA, LayoutInputA> tensor_a(options.input_size);
cutlass::HostTensor<ElementInputB, LayoutInputB> tensor_b(options.filter_size);
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_c(options.output_size());
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_d(options.output_size());
cutlass::HostTensor<ElementOutput, LayoutOutput> tensor_ref_d(options.output_size());
//
// Initialize tensors
//
// Fill tensor A on host with uniformly distributed random data
cutlass::reference::host::TensorFillRandomUniform(
tensor_a.host_view(),
1,
ElementInputA(7),
ElementInputA(-8),
0);
// Fill tensor B on host with uniformly distributed random data
cutlass::reference::host::TensorFillRandomUniform(
tensor_b.host_view(),
1,
ElementInputB(7),
ElementInputB(-8),
0);
// Fill tensor C on host with uniformly distributed random data
cutlass::reference::host::TensorFillRandomUniform(
tensor_c.host_view(),
1,
ElementOutput(7),
ElementOutput(-8),
0);
// Fill tensor D on host with zeros
cutlass::reference::host::TensorFill(
tensor_d.host_view());
// Fill tensor D for reference on host with zeros
cutlass::reference::host::TensorFill(
tensor_ref_d.host_view());
// Copy data from host to GPU
tensor_a.sync_device();
tensor_b.sync_device();
tensor_c.sync_device();
tensor_d.sync_device();
tensor_ref_d.sync_device();
//
// Define arguments for CUTLASS Convolution
//
cutlass::conv::Mode mode = cutlass::conv::Mode::kCrossCorrelation;
// Split K dimension into 1 partitions
int split_k_slices = 1;
// Construct Conv2dProblemSize with user defined output size
cutlass::conv::Conv2dProblemSize problem_size(
options.input_size,
options.filter_size,
options.padding,
options.conv_stride,
options.dilation,
options.output_size(),
mode,
split_k_slices
);
// Construct ImplicitGemm::Argument structure with conv2d
// problem size, data pointers, and epilogue values
typename ImplicitGemm::Arguments arguments{
problem_size,
tensor_a.device_ref(),
tensor_b.device_ref(),
tensor_c.device_ref(),
tensor_d.device_ref(),
{options.alpha, options.beta},
};
//
// Initialize CUTLASS Convolution
//
ImplicitGemm implicit_gemm_op;
size_t workspace_size = implicit_gemm_op.get_workspace_size(arguments);
// Allocate workspace memory
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
result.status = implicit_gemm_op.can_implement(arguments);
CUTLASS_CHECK(result.status);
result.status = implicit_gemm_op.initialize(arguments, workspace.get());
CUTLASS_CHECK(result.status);
//
// Launch initialized CUTLASS kernel
//
result.status = implicit_gemm_op();
CUTLASS_CHECK(result.status);
//
// Optional reference check
//
if (options.reference_check) {
std::cout << "Verification on host...\n";
// Compute with reference implementation
cutlass::reference::host::Conv2dFprop<
ElementInputA,
LayoutInputA,
ElementInputB,
LayoutInputB,
ElementOutput,
LayoutOutput,
ElementComputeEpilogue,
ElementAccumulator
>(
problem_size,
tensor_a.host_ref(),
tensor_b.host_ref(),
tensor_c.host_ref(),
tensor_ref_d.host_ref(),
options.alpha,
options.beta
);
// Check if CUTLASS kernel and reference kernel produced the same output
tensor_d.sync_host();
bool passed = cutlass::reference::host::TensorEquals(
tensor_d.host_view(),
tensor_ref_d.host_view());
if (!passed) {
result.reference_check = cutlass::Status::kErrorInternal;
std::cout << "ERROR - results miscompared.\n";
}
else {
result.reference_check = cutlass::Status::kSuccess;
std::cout << "Passed.\n";
}
}
else {
result.reference_check = cutlass::Status::kInvalid;
}
if (options.save_workspace) {
std::stringstream ss;
ss << "16_ampere_workspace_conv2dfprop_"
<< options.input_size.n() << "x" << options.input_size.h() << "x" << options.input_size.w() << "x" << options.input_size.c()
<< "_"
<< options.filter_size.n() << "x" << options.filter_size.h() << "x" << options.filter_size.w() << "x" << options.filter_size.c()
<< ".dat";
std::ofstream output_workspace(ss.str());
output_workspace
<< "Input = \n" << tensor_a.host_view() << "\n\n"
<< "Filters = \n" << tensor_b.host_view() << "\n\n";
if (options.reference_check) {
output_workspace << "Reference = \n" << tensor_ref_d.host_view() << "\n\n";
}
output_workspace << "Computed = \n" << tensor_d.host_view() << std::endl;
std::cout << "Results written to '" << ss.str() << "'." << std::endl;
}
//
// Performance measurement
//
if (options.measure_performance) {
cudaEvent_t events[2];
for (auto & event : events) {
result.error = cudaEventCreate(&event);
if (result.error != cudaSuccess) {
std::cerr << "cudaEventCreate() failed: " << cudaGetErrorString(result.error) << std::endl;
return result;
}
}
// Record an event at the start of a series of convolution operations.
result.error = cudaEventRecord(events[0]);
if (result.error != cudaSuccess) {
std::cerr << "cudaEventRecord() failed: " << cudaGetErrorString(result.error) << std::endl;
return result;
}
// Launch a sequence of implicit GEMM operations on the device.
for (int iteration = 0; iteration < options.iterations; ++iteration) {
result.status = implicit_gemm_op();
CUTLASS_CHECK(result.status);
}
// Record an event when the convolutions have been launched.
result.error = cudaEventRecord(events[1]);
if (result.error != cudaSuccess) {
std::cerr << "cudaEventRecord() failed: " << cudaGetErrorString(result.error) << std::endl;
return result;
}
// Wait for work on the device to complete.
result.error = cudaEventSynchronize(events[1]);
if (result.error != cudaSuccess) {
std::cerr << "cudaEventSynchronize() failed: " << cudaGetErrorString(result.error) << std::endl;
return result;
}
// Measure elapsed runtime.
float runtime_ms = 0;
result.error = cudaEventElapsedTime(&runtime_ms, events[0], events[1]);
if (result.error != cudaSuccess) {
std::cerr << "cudaEventElapsed() failed: " << cudaGetErrorString(result.error) << std::endl;
return result;
}
// Print average run time and floating-point throughput (Gflop/s).
result.runtime_ms = double(runtime_ms) / double(options.iterations);
result.gflops = options.gflops(result.runtime_ms / 1000.0);
// Cleanup
for (auto event : events) {
(void)cudaEventDestroy(event);
}
}
return result;
}
int main(int argc, char const **args) {
bool notSupported = false;
// Ampere Tensor Core operations exposed with mma.sync are first available in CUDA 11.0.
//
// CUTLASS must be compiled with CUDA 11 Toolkit to run Conv2dFprop examples.
if (!(__CUDACC_VER_MAJOR__ > 11 || (__CUDACC_VER_MAJOR__ == 11 && __CUDACC_VER_MINOR__ >= 0))) {
std::cerr << "Ampere Tensor Core operations must be compiled with CUDA 11.0 Toolkit or later." << std::endl;
notSupported = true;
}
cudaDeviceProp props;
CUDA_CHECK(cudaGetDeviceProperties(&props, 0));
if (!(props.major >= 8)) {
std::cerr << "Ampere Tensor Ops must be run on a machine with compute capability at least 80."
<< std::endl;
notSupported = true;
}
if (notSupported) {
return 0;
}
Options options;
options.parse(argc, args);
if (options.help) {
options.print_usage(std::cout) << std::endl;
return 0;
}
if (options.benchmark) {
// Benchmark several layers
int batch_sizes[] = {1, 32, 64, 128, 256, 512};
struct Benchmark {
int h, w, c, k, r, s;
} layers[] = {
{56, 56, 64, 256, 1, 1},
{56, 56, 64, 64, 1, 1},
{56, 56, 64, 64, 3, 3},
{56, 56, 256, 64, 1, 1},
{56, 56, 256, 512, 1, 1},
{56, 56, 256, 128, 1, 1},
{28, 28, 128, 128, 3, 3},
{28, 28, 128, 512, 1, 1},
{28, 28, 512, 128, 1, 1},
{28, 28, 512, 1024, 1, 1},
{28, 28, 512, 256, 1, 1},
{14, 14, 256, 256, 3, 3},
{14, 14, 256, 1024, 1, 1},
{14, 14, 1024, 256, 1, 1},
{14, 14, 1024, 2048, 1, 1},
{14, 14, 1024, 512, 1, 1},
{7, 7, 512, 512, 3, 3},
};
Result::print_header(std::cout, options) << std::endl;
int idx = 1;
for (auto const &layer : layers) {
for (auto N : batch_sizes) {
options.update({N, layer.h, layer.w, layer.c}, {layer.k, layer.r, layer.s, layer.c});
Result result = profile_convolution(options);
result.print(std::cout, idx, options) << std::endl;
}
++idx;
}
}
else {
// Execute one problem size
if (!options.valid()) {
std::cerr << "Invalid problem." << std::endl;
return -1;
}
Result result = profile_convolution(options);
Result::print_header(std::cout, options) << std::endl;
result.print(std::cout, 1, options) << std::endl;
}
return 0;
}