From 98cdc8a883d570062292f1060444b9b94d9a037c Mon Sep 17 00:00:00 2001 From: Jani Monoses Date: Thu, 28 Nov 2024 08:32:00 +0200 Subject: [PATCH] Add OLMo2 model. --- python/sglang/srt/models/olmo2.py | 392 ++++++++++++++++++++++ test/srt/models/test_generation_models.py | 1 + 2 files changed, 393 insertions(+) create mode 100755 python/sglang/srt/models/olmo2.py diff --git a/python/sglang/srt/models/olmo2.py b/python/sglang/srt/models/olmo2.py new file mode 100755 index 0000000000..d73a6d5a3d --- /dev/null +++ b/python/sglang/srt/models/olmo2.py @@ -0,0 +1,392 @@ +# Copyright 2023-2024 SGLang Team +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================== + +# Adapted from +# https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/models/olmo2.py +"""Inference-only OLMo2 model compatible with HuggingFace weights.""" +from functools import partial +from typing import Iterable, Optional, Tuple + +import torch +from torch import nn +from transformers import PretrainedConfig +from vllm.distributed import ( + get_tensor_model_parallel_rank, + get_tensor_model_parallel_world_size, + split_tensor_along_last_dim, + tensor_model_parallel_all_gather, +) +from vllm.model_executor.layers.rotary_embedding import get_rope +from vllm.model_executor.model_loader.weight_utils import default_weight_loader + +from sglang.srt.layers.activation import SiluAndMul +from sglang.srt.layers.layernorm import RMSNorm +from sglang.srt.layers.linear import ( + MergedColumnParallelLinear, + QKVParallelLinear, + RowParallelLinear, +) +from sglang.srt.layers.logits_processor import LogitsProcessor +from sglang.srt.layers.quantization.base_config import QuantizationConfig +from sglang.srt.layers.radix_attention import RadixAttention +from sglang.srt.layers.vocab_parallel_embedding import ( + ParallelLMHead, + VocabParallelEmbedding, +) +from sglang.srt.model_executor.forward_batch_info import ForwardBatch +from sglang.srt.utils import make_layers + + +class Olmo2Attention(nn.Module): + """ + This is the attention block where the output is computed as + ``Attention(LN(x))`` in ``MLP(LN(x + Attention(LN(x))))`` + (plus another skip connection). + """ + + def __init__( + self, + config: PretrainedConfig, + layer_id: int = 0, + quant_config: Optional[QuantizationConfig] = None, + ): + super().__init__() + self.config = config + self.hidden_size = config.hidden_size + tp_size = get_tensor_model_parallel_world_size() + self.total_num_heads = config.num_attention_heads + + assert self.hidden_size % self.total_num_heads == 0 + assert self.total_num_heads % tp_size == 0 + + self.num_heads = self.total_num_heads // tp_size + self.total_num_kv_heads = self.config.num_key_value_heads + + if self.total_num_kv_heads >= tp_size: + # Number of KV heads is greater than TP size, so we partition + # the KV heads across multiple tensor parallel GPUs. + assert self.total_num_kv_heads % tp_size == 0 + else: + # Number of KV heads is less than TP size, so we replicate + # the KV heads across multiple tensor parallel GPUs. + assert tp_size % self.total_num_kv_heads == 0 + self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) + + self.head_dim = self.hidden_size // self.total_num_heads + self.max_position_embeddings = config.max_position_embeddings + self.rope_theta = config.rope_theta + + # Attention input projection. Projects x -> (q, k, v) + self.qkv_proj = QKVParallelLinear( + self.hidden_size, + self.head_dim, + self.total_num_heads, + bias=config.attention_bias, + ) + self.tp_rank = get_tensor_model_parallel_rank() + + self.k_norm = RMSNorm( + self.total_num_kv_heads * self.head_dim, + eps=self.config.rms_norm_eps, + ) + self.q_norm = RMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps) + # Rotary embeddings. + self.rotary_emb = get_rope( + self.head_dim, + rotary_dim=self.head_dim, + max_position=self.max_position_embeddings, + base=self.rope_theta, + ) + self.scaling = self.head_dim**-0.5 + self.attn = RadixAttention( + self.num_heads, + self.head_dim, + self.scaling, + num_kv_heads=self.num_kv_heads, + layer_id=layer_id, + ) + + # Attention output projection. + self.o_proj = RowParallelLinear( + self.head_dim * self.total_num_heads, + self.hidden_size, + bias=config.attention_bias, + ) + + def _apply_qk_norm( + self, q: torch.Tensor, k: torch.Tensor + ) -> Tuple[torch.Tensor, torch.Tensor]: + if self.tp_size > 1: + q = tensor_model_parallel_all_gather(q.contiguous()) + k = tensor_model_parallel_all_gather(k.contiguous()) + q = self.q_norm.forward_native(q) + k = self.k_norm.forward_native(k) + if self.tp_size > 1: + splitter = partial(split_tensor_along_last_dim, num_partitions=self.tp_size) + q = splitter(q)[self.tp_rank] + k = splitter(k)[self.tp_rank] + return q, k + + def forward( + self, + positions: torch.Tensor, + hidden_states: torch.Tensor, + forward_batch: ForwardBatch, + ) -> torch.Tensor: + qkv, _ = self.qkv_proj(hidden_states) + q, k, v = qkv.chunk(chunks=3, dim=-1) + q, k = self._apply_qk_norm(q, k) + q, k = self.rotary_emb(positions, q, k) + attn_output = self.attn(q, k, v, forward_batch) + output, _ = self.o_proj(attn_output) + return output + + +class Olmo2MLP(nn.Module): + """ + This is the MLP block where the output is computed as + ``MLP(x)`` in ``LN(MLP(x + LN(Attention(x))))`` + (plus another skip connection). + """ + + def __init__( + self, + config: PretrainedConfig, + quant_config: Optional[QuantizationConfig] = None, + ): + super().__init__() + self.config = config + self.hidden_size = config.hidden_size + self.intermediate_size = config.intermediate_size + + # Feed-forward input projection. + self.gate_up_proj = MergedColumnParallelLinear( + self.hidden_size, + [self.intermediate_size] * 2, + bias=False, + quant_config=quant_config, + ) + + # Activation function. + self.act_fn = SiluAndMul() + + # Feed-forward output projection. + self.down_proj = RowParallelLinear( + self.intermediate_size, + self.hidden_size, + bias=False, + quant_config=quant_config, + ) + + def forward( + self, + x: torch.Tensor, + ) -> torch.Tensor: + gate_up, _ = self.gate_up_proj(x) + x = self.act_fn(gate_up) + x, _ = self.down_proj(x) + return x + + +class Olmo2DecoderLayer(nn.Module): + """ + This is a typical transformer block where the output is + computed as ``MLP(LN(x + Attention(LN(x))))`` + (plus another skip connection). + """ + + def __init__( + self, + config: PretrainedConfig, + layer_id: int = 0, + quant_config: Optional[QuantizationConfig] = None, + ): + super().__init__() + # Attention block. + self.self_attn = Olmo2Attention(config, layer_id, quant_config) + + # MLP block. + self.mlp = Olmo2MLP(config, quant_config) + + # RMSNorm + self.post_attention_layernorm = RMSNorm( + config.hidden_size, eps=config.rms_norm_eps + ) + + self.post_feedforward_layernorm = RMSNorm( + config.hidden_size, eps=config.rms_norm_eps + ) + + def forward( + self, + positions: torch.Tensor, + hidden_states: torch.Tensor, + forward_batch: ForwardBatch, + ) -> torch.Tensor: + # Attention block. + residual = hidden_states + hidden_states = self.self_attn(positions, hidden_states, forward_batch) + hidden_states = self.post_attention_layernorm(hidden_states) + hidden_states = hidden_states + residual + + # MLP block. + residual = hidden_states + hidden_states = self.mlp(hidden_states) + hidden_states = self.post_feedforward_layernorm(hidden_states) + hidden_states = residual + hidden_states + return hidden_states + + +class Olmo2Model(nn.Module): + + def __init__( + self, + config: PretrainedConfig, + quant_config: Optional[QuantizationConfig] = None, + ): + super().__init__() + self.config = config + + self.embed_tokens = VocabParallelEmbedding( + config.vocab_size, config.hidden_size + ) + self.layers = make_layers( + config.num_hidden_layers, + lambda idx, prefix: Olmo2DecoderLayer( + layer_id=idx, + config=config, + quant_config=quant_config, + ), + ) + self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) + + def forward( + self, + input_ids: torch.Tensor, + positions: torch.Tensor, + forward_batch: ForwardBatch, + input_embeds: torch.Tensor = None, + ) -> torch.Tensor: + """ + :param input_ids: A tensor of shape `(batch_size, seq_len)`. + """ + # Get embeddings of input. + # shape: (batch_size, seq_len, d_model) + + if input_embeds is None: + hidden_states = self.embed_tokens(input_ids) + else: + hidden_states = input_embeds + + # Apply blocks one-by-one. + for layer_id, decoder_layer in enumerate(self.layers): + # shape: (batch_size, seq_len, d_model) + hidden_states = decoder_layer( + positions, + hidden_states, + forward_batch, + ) + + # Apply final layer norm. + # shape: (batch_size, seq_len or 1, d_model) + hidden_states = self.norm(hidden_states) + return hidden_states + + +class Olmo2ForCausalLM(nn.Module): + """ + Extremely barebones HF model wrapper. + """ + + def __init__( + self, + config: PretrainedConfig, + cache_config=None, + quant_config: Optional[QuantizationConfig] = None, + ): + super().__init__() + self.config = config + self.model = Olmo2Model(config, quant_config) + if config.tie_word_embeddings: + self.lm_head = self.model.embed_tokens + else: + self.unpadded_vocab_size = config.vocab_size + self.lm_head = ParallelLMHead( + self.unpadded_vocab_size, + config.hidden_size, + org_num_embeddings=config.vocab_size, + quant_config=quant_config, + ) + self.logits_processor = LogitsProcessor(config) + + def forward( + self, + input_ids: torch.Tensor, + positions: torch.Tensor, + forward_batch: ForwardBatch, + input_embeds: torch.Tensor = None, + ) -> torch.Tensor: + hidden_states = self.model( + input_ids=input_ids, + positions=positions, + forward_batch=forward_batch, + input_embeds=input_embeds, + ) + return self.logits_processor( + input_ids, hidden_states, self.lm_head.weight, forward_batch + ) + + def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): + stacked_params_mapping = [ + # (param_name, shard_name, shard_id) + ("qkv_proj", "q_proj", "q"), + ("qkv_proj", "k_proj", "k"), + ("qkv_proj", "v_proj", "v"), + ("gate_up_proj", "gate_proj", 0), + ("gate_up_proj", "up_proj", 1), + ] + params_dict = dict(self.named_parameters(remove_duplicate=False)) + for name, loaded_weight in weights: + if "rotary_emb.inv_freq" in name: + continue + if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name: + # Models trained using ColossalAI may include these tensors in + # the checkpoint. Skip them. + continue + # With tie_word_embeddings, we can skip lm_head.weight + # The weight might appear unnecessarily in the files if the model is + # processed with quantization, LoRA, fine-tuning, etc. + if self.config.tie_word_embeddings and "lm_head.weight" in name: + continue + for param_name, weight_name, shard_id in stacked_params_mapping: + if weight_name not in name: + continue + name = name.replace(weight_name, param_name) + # Skip loading extra bias for GPTQ models. + if name.endswith(".bias") and name not in params_dict: + continue + param = params_dict[name] + weight_loader = param.weight_loader + weight_loader(param, loaded_weight, shard_id) + break + else: + # Skip loading extra bias for GPTQ models. + if name.endswith(".bias") and name not in params_dict: + continue + param = params_dict[name] + weight_loader = getattr(param, "weight_loader", default_weight_loader) + weight_loader(param, loaded_weight) + + +EntryClass = Olmo2ForCausalLM diff --git a/test/srt/models/test_generation_models.py b/test/srt/models/test_generation_models.py index dbe35b0e7e..d9f1795341 100644 --- a/test/srt/models/test_generation_models.py +++ b/test/srt/models/test_generation_models.py @@ -56,6 +56,7 @@ class ModelCase: ModelCase("THUDM/glm-4-9b-chat"), ModelCase("openai-community/gpt2"), ModelCase("microsoft/Phi-3-small-8k-instruct"), + ModelCase("allenai/OLMo-2-1124-7B-Instruct", skip_long_prompt=True), ] TORCH_DTYPES = [torch.float16]