-
Notifications
You must be signed in to change notification settings - Fork 21
/
train.py
266 lines (239 loc) · 10.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import os
import random
import pickle
import argparse
from collections import deque
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import IterableDataset, DataLoader, get_worker_info
from torch.utils.tensorboard import SummaryWriter
class TripletUniformPair(IterableDataset):
def __init__(self, num_item, user_list, pair, shuffle, num_epochs):
self.num_item = num_item
self.user_list = user_list
self.pair = pair
self.shuffle = shuffle
self.num_epochs = num_epochs
def __iter__(self):
worker_info = get_worker_info()
# Shuffle per epoch
self.example_size = self.num_epochs * len(self.pair)
self.example_index_queue = deque([])
self.seed = 0
if worker_info is not None:
self.start_list_index = worker_info.id
self.num_workers = worker_info.num_workers
self.index = worker_info.id
else:
self.start_list_index = None
self.num_workers = 1
self.index = 0
return self
def __next__(self):
if self.index >= self.example_size:
raise StopIteration
# If `example_index_queue` is used up, replenish this list.
while len(self.example_index_queue) == 0:
index_list = list(range(len(self.pair)))
if self.shuffle:
random.Random(self.seed).shuffle(index_list)
self.seed += 1
if self.start_list_index is not None:
index_list = index_list[self.start_list_index::self.num_workers]
# Calculate next start index
self.start_list_index = (self.start_list_index + (self.num_workers - (len(self.pair) % self.num_workers))) % self.num_workers
self.example_index_queue.extend(index_list)
result = self._example(self.example_index_queue.popleft())
self.index += self.num_workers
return result
def _example(self, idx):
u = self.pair[idx][0]
i = self.pair[idx][1]
j = np.random.randint(self.num_item)
while j in self.user_list[u]:
j = np.random.randint(self.num_item)
return u, i, j
class BPR(nn.Module):
def __init__(self, user_size, item_size, dim, weight_decay):
super().__init__()
self.W = nn.Parameter(torch.empty(user_size, dim))
self.H = nn.Parameter(torch.empty(item_size, dim))
nn.init.xavier_normal_(self.W.data)
nn.init.xavier_normal_(self.H.data)
self.weight_decay = weight_decay
def forward(self, u, i, j):
"""Return loss value.
Args:
u(torch.LongTensor): tensor stored user indexes. [batch_size,]
i(torch.LongTensor): tensor stored item indexes which is prefered by user. [batch_size,]
j(torch.LongTensor): tensor stored item indexes which is not prefered by user. [batch_size,]
Returns:
torch.FloatTensor
"""
u = self.W[u, :]
i = self.H[i, :]
j = self.H[j, :]
x_ui = torch.mul(u, i).sum(dim=1)
x_uj = torch.mul(u, j).sum(dim=1)
x_uij = x_ui - x_uj
log_prob = F.logsigmoid(x_uij).sum()
regularization = self.weight_decay * (u.norm(dim=1).pow(2).sum() + i.norm(dim=1).pow(2).sum() + j.norm(dim=1).pow(2).sum())
return -log_prob + regularization
def recommend(self, u):
"""Return recommended item list given users.
Args:
u(torch.LongTensor): tensor stored user indexes. [batch_size,]
Returns:
pred(torch.LongTensor): recommended item list sorted by preference. [batch_size, item_size]
"""
u = self.W[u, :]
x_ui = torch.mm(u, self.H.t())
pred = torch.argsort(x_ui, dim=1)
return pred
def precision_and_recall_k(user_emb, item_emb, train_user_list, test_user_list, klist, batch=512):
"""Compute precision at k using GPU.
Args:
user_emb (torch.Tensor): embedding for user [user_num, dim]
item_emb (torch.Tensor): embedding for item [item_num, dim]
train_user_list (list(set)):
test_user_list (list(set)):
k (list(int)):
Returns:
(torch.Tensor, torch.Tensor) Precision and recall at k
"""
# Calculate max k value
max_k = max(klist)
# Compute all pair of training and test record
result = None
for i in range(0, user_emb.shape[0], batch):
# Create already observed mask
mask = user_emb.new_ones([min([batch, user_emb.shape[0]-i]), item_emb.shape[0]])
for j in range(batch):
if i+j >= user_emb.shape[0]:
break
mask[j].scatter_(dim=0, index=torch.tensor(list(train_user_list[i+j])).cuda(), value=torch.tensor(0.0).cuda())
# Calculate prediction value
cur_result = torch.mm(user_emb[i:i+min(batch, user_emb.shape[0]-i), :], item_emb.t())
cur_result = torch.sigmoid(cur_result)
assert not torch.any(torch.isnan(cur_result))
# Make zero for already observed item
cur_result = torch.mul(mask, cur_result)
_, cur_result = torch.topk(cur_result, k=max_k, dim=1)
result = cur_result if result is None else torch.cat((result, cur_result), dim=0)
result = result.cpu()
# Sort indice and get test_pred_topk
precisions, recalls = [], []
for k in klist:
precision, recall = 0, 0
for i in range(user_emb.shape[0]):
test = set(test_user_list[i])
pred = set(result[i, :k].numpy().tolist())
val = len(test & pred)
precision += val / max([min([k, len(test)]), 1])
recall += val / max([len(test), 1])
precisions.append(precision / user_emb.shape[0])
recalls.append(recall / user_emb.shape[0])
return precisions, recalls
def main(args):
# Initialize seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# Load preprocess data
with open(args.data, 'rb') as f:
dataset = pickle.load(f)
user_size, item_size = dataset['user_size'], dataset['item_size']
train_user_list, test_user_list = dataset['train_user_list'], dataset['test_user_list']
train_pair = dataset['train_pair']
print('Load complete')
# Create dataset, model, optimizer
dataset = TripletUniformPair(item_size, train_user_list, train_pair, True, args.n_epochs)
loader = DataLoader(dataset, batch_size=args.batch_size, num_workers=16)
model = BPR(user_size, item_size, args.dim, args.weight_decay).cuda()
optimizer = optim.Adam(model.parameters(), lr=args.lr)
writer = SummaryWriter()
# Training
smooth_loss = 0
idx = 0
for u, i, j in loader:
optimizer.zero_grad()
loss = model(u, i, j)
loss.backward()
optimizer.step()
writer.add_scalar('train/loss', loss, idx)
smooth_loss = smooth_loss*0.99 + loss*0.01
if idx % args.print_every == (args.print_every - 1):
print('loss: %.4f' % smooth_loss)
if idx % args.eval_every == (args.eval_every - 1):
plist, rlist = precision_and_recall_k(model.W.detach(),
model.H.detach(),
train_user_list,
test_user_list,
klist=[1, 5, 10])
print('P@1: %.4f, P@5: %.4f P@10: %.4f, R@1: %.4f, R@5: %.4f, R@10: %.4f' % (plist[0], plist[1], plist[2], rlist[0], rlist[1], rlist[2]))
writer.add_scalars('eval', {'P@1': plist[0],
'P@5': plist[1],
'P@10': plist[2]}, idx)
writer.add_scalars('eval', {'R@1': rlist[0],
'R@5': rlist[1],
'R@10': rlist[2]}, idx)
if idx % args.save_every == (args.save_every - 1):
dirname = os.path.dirname(os.path.abspath(args.model))
os.makedirs(dirname, exist_ok=True)
torch.save(model.state_dict(), args.model)
idx += 1
if __name__ == '__main__':
# Parse argument
parser = argparse.ArgumentParser()
parser.add_argument('--data',
type=str,
default=os.path.join('preprocessed', 'ml-1m.pickle'),
help="File path for data")
# Seed
parser.add_argument('--seed',
type=int,
default=0,
help="Seed (For reproducability)")
# Model
parser.add_argument('--dim',
type=int,
default=4,
help="Dimension for embedding")
# Optimizer
parser.add_argument('--lr',
type=float,
default=1e-3,
help="Learning rate")
parser.add_argument('--weight_decay',
type=float,
default=0.025,
help="Weight decay factor")
# Training
parser.add_argument('--n_epochs',
type=int,
default=500,
help="Number of epoch during training")
parser.add_argument('--batch_size',
type=int,
default=4096,
help="Batch size in one iteration")
parser.add_argument('--print_every',
type=int,
default=20,
help="Period for printing smoothing loss during training")
parser.add_argument('--eval_every',
type=int,
default=1000,
help="Period for evaluating precision and recall during training")
parser.add_argument('--save_every',
type=int,
default=10000,
help="Period for saving model during training")
parser.add_argument('--model',
type=str,
default=os.path.join('output', 'bpr.pt'),
help="File path for model")
args = parser.parse_args()
main(args)