forked from mdolab/OpenAeroStruct
-
Notifications
You must be signed in to change notification settings - Fork 1
/
plot_all.py
757 lines (625 loc) · 29.4 KB
/
plot_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
""" Script to plot results from aero, struct, or aerostruct optimization.
Usage is
`python plot_all.py aero.db` for aero only,
`python plot_all.py struct.db` for struct only,
`python plot_all.py aerostruct.db` for aerostruct, or
`python plot_all.py __name__` for user-named database.
You can select a certain zoom factor for the 3d view by adding a number as a
last keyword.
The larger the number, the closer the view. Floats or ints are accepted.
Ex: `python plot_all.py aero.db 1` a wider view than `python plot_all.py aero.db 5`.
"""
from __future__ import division, print_function
import sys
major_python_version = sys.version_info[0]
if major_python_version == 2:
import tkFont
import Tkinter as Tk
else:
import tkinter as Tk
from tkinter import font as tkFont
from six import iteritems
import numpy as np
try:
import matplotlib
matplotlib.use('TkAgg')
matplotlib.rcParams['lines.linewidth'] = 2
matplotlib.rcParams['axes.edgecolor'] = 'gray'
matplotlib.rcParams['axes.linewidth'] = 0.5
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg,\
NavigationToolbar2TkAgg
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
import matplotlib.animation as manimation
import sqlitedict
except:
print()
print("Correct plotting modules not available; please consult import list")
print()
#####################
# User-set parameters
#####################
db_name = sys.argv[1]
try:
zoom_scale = sys.argv[2]
except:
zoom_scale = 2.8
class Display(object):
def __init__(self, db_name):
self.root = Tk.Tk()
self.root.wm_title("Viewer")
self.f = plt.figure(dpi=100, figsize=(12, 6), facecolor='white')
self.canvas = FigureCanvasTkAgg(self.f, master=self.root)
self.canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1)
self.options_frame = Tk.Frame(self.root)
self.options_frame.pack()
toolbar = NavigationToolbar2TkAgg(self.canvas, self.root)
toolbar.update()
self.canvas._tkcanvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1)
self.ax = plt.subplot2grid((4, 8), (0, 0), rowspan=4,
colspan=4, projection='3d')
self.num_iters = 0
self.db_name = db_name
self.show_wing = True
self.show_tube = True
self.curr_pos = 0
self.old_n = 0
self.aerostruct = False
self.load_db()
if self.show_wing and not self.show_tube:
self.ax2 = plt.subplot2grid((4, 8), (0, 4), rowspan=2, colspan=4)
self.ax3 = plt.subplot2grid((4, 8), (2, 4), rowspan=2, colspan=4)
if self.show_tube and not self.show_wing:
self.ax4 = plt.subplot2grid((4, 8), (0, 4), rowspan=2, colspan=4)
self.ax5 = plt.subplot2grid((4, 8), (2, 4), rowspan=2, colspan=4)
if self.show_wing and self.show_tube:
self.ax2 = plt.subplot2grid((4, 8), (0, 4), colspan=4)
self.ax3 = plt.subplot2grid((4, 8), (1, 4), colspan=4)
self.ax4 = plt.subplot2grid((4, 8), (2, 4), colspan=4)
self.ax5 = plt.subplot2grid((4, 8), (3, 4), colspan=4)
def load_db(self):
self.db = sqlitedict.SqliteDict(self.db_name, 'iterations')
self.twist = []
self.mesh = []
self.def_mesh = []
self.radius = []
self.thickness = []
sec_forces = []
normals = []
widths = []
self.lift = []
self.lift_ell = []
self.vonmises = []
alpha = []
rho = []
v = []
self.CL = []
self.AR = []
self.S_ref = []
self.obj = []
self.cg = []
meta_db = sqlitedict.SqliteDict(self.db_name, 'metadata')
self.opt = False
for item in meta_db['Unknowns']:
if 'is_objective' in meta_db['Unknowns'][item].keys():
self.obj_key = item
if major_python_version == 3:
keys_length = sum(1 for _ in self.db.keys())
else:
keys_length = len(self.db.keys())
if keys_length > 2:
self.opt = True
self.yield_stress_dict = {}
self.fem_origin_dict = {}
for key, value in iteritems(meta_db['system_metadata']):
if 'yield_stress' in key:
self.yield_stress_dict.update({key : value})
if 'fem_origin' in key:
self.fem_origin_dict.update({key : value})
deriv_keys = sqlitedict.SqliteDict(self.db_name, 'derivs').keys()
deriv_keys = [int(key.split('|')[-1]) for key in deriv_keys]
for i, (case_name, case_data) in enumerate(iteritems(self.db)):
if i == 0:
pass
elif i not in deriv_keys:
if deriv_keys:
continue # don't plot these cases
if self.opt:
self.obj.append(case_data['Unknowns'][self.obj_key])
names = []
for key in case_data['Unknowns'].keys():
# Aerostructural
if 'coupled' in key and 'loads' in key:
self.aerostruct = True
names.append(key.split('_')[:-1][0])
# Aero only
elif 'def_mesh' in key and 'coupled' not in key:
names.append(key.split('.')[0])
# Structural only
elif 'disp_aug' in key and 'coupled' not in key:
names.append(key.split('.')[0])
self.names = names
n_names = len(names)
self.twist_included = False
# Loop through each of the surfaces
for name in names:
# Check if this is an aerostructual case; treat differently
# due to the way the problem is organized
if not self.aerostruct:
# A mesh exists for all types of cases
self.mesh.append(case_data['Unknowns'][name+'.mesh'])
try:
self.radius.append(case_data['Unknowns'][name+'.radius'])
self.thickness.append(case_data['Unknowns'][name+'.thickness'])
self.vonmises.append(
np.max(case_data['Unknowns'][name+'.vonmises'], axis=1))
self.show_tube = True
except:
self.show_tube = False
try:
self.def_mesh.append(case_data['Unknowns'][name+'.def_mesh'])
normals.append(case_data['Unknowns'][name+'.normals'])
widths.append(case_data['Unknowns'][name+'.widths'])
sec_forces.append(case_data['Unknowns']['aero_states.' + name + '_sec_forces'])
self.CL.append(case_data['Unknowns'][name+'_perf.CL1'])
self.S_ref.append(case_data['Unknowns'][name+'.S_ref'])
self.show_wing = True
# Not the best solution for now, but this will ensure
# that this plots corectly even if twist isn't a desvar
try:
self.twist.append(case_data['Unknowns'][name+'.twist'])
self.twist_included = True
except:
pass
except:
self.show_wing = False
else:
self.show_wing, self.show_tube = True, True
short_name = name.split('.')[1:][0]
self.mesh.append(case_data['Unknowns'][short_name+'.mesh'])
self.radius.append(case_data['Unknowns'][short_name+'.radius'])
self.thickness.append(case_data['Unknowns'][short_name+'.thickness'])
self.vonmises.append(
np.max(case_data['Unknowns'][short_name+'_perf.vonmises'], axis=1))
self.def_mesh.append(case_data['Unknowns'][name+'.def_mesh'])
normals.append(case_data['Unknowns'][name+'.normals'])
widths.append(case_data['Unknowns'][name+'.widths'])
sec_forces.append(case_data['Unknowns']['coupled.aero_states.' + short_name + '_sec_forces'])
self.CL.append(case_data['Unknowns'][short_name+'_perf.CL1'])
self.S_ref.append(case_data['Unknowns'][name+'.S_ref'])
# Not the best solution for now, but this will ensure
# that this plots corectly even if twist isn't a desvar
try:
self.twist.append(case_data['Unknowns'][short_name+'.twist'])
self.twist_included = True
except:
pass
if not self.twist_included:
ny = self.mesh[0].shape[1]
self.twist.append(np.zeros(ny))
if self.show_wing:
alpha.append(case_data['Unknowns']['alpha'] * np.pi / 180.)
rho.append(case_data['Unknowns']['rho'])
v.append(case_data['Unknowns']['v'])
self.cg.append(case_data['Unknowns']['cg'])
if self.opt:
self.num_iters = np.max([int(len(self.mesh) / n_names) - 1, 1])
else:
self.num_iters = 0
symm_count = 0
for mesh in self.mesh:
if np.all(mesh[:, :, 1] >= -1e-8) or np.all(mesh[:, :, 1] <= 1e-8):
symm_count += 1
if symm_count == len(self.mesh):
self.symmetry = True
else:
self.symmetry = False
if self.symmetry:
new_mesh = []
if self.show_tube:
new_r = []
new_thickness = []
new_vonmises = []
if self.show_wing:
new_twist = []
new_sec_forces = []
new_def_mesh = []
new_widths = []
new_normals = []
for i in range(self.num_iters + 1):
for j, name in enumerate(names):
mirror_mesh = self.mesh[i*n_names+j].copy()
mirror_mesh[:, :, 1] *= -1.
mirror_mesh = mirror_mesh[:, ::-1, :][:, 1:, :]
new_mesh.append(np.hstack((self.mesh[i*n_names+j], mirror_mesh)))
if self.show_tube:
thickness = self.thickness[i*n_names+j]
new_thickness.append(np.hstack((thickness, thickness[::-1])))
r = self.radius[i*n_names+j]
new_r.append(np.hstack((r, r[::-1])))
vonmises = self.vonmises[i*n_names+j]
new_vonmises.append(np.hstack((vonmises, vonmises[::-1])))
if self.show_wing:
mirror_mesh = self.def_mesh[i*n_names+j].copy()
mirror_mesh[:, :, 1] *= -1.
mirror_mesh = mirror_mesh[:, ::-1, :][:, 1:, :]
new_def_mesh.append(np.hstack((self.def_mesh[i*n_names+j], mirror_mesh)))
mirror_normals = normals[i*n_names+j].copy()
mirror_normals = mirror_normals[:, ::-1, :][:, 1:, :]
new_normals.append(np.hstack((normals[i*n_names+j], mirror_normals)))
mirror_forces = sec_forces[i*n_names+j].copy()
mirror_forces = mirror_forces[:, ::-1, :]
new_sec_forces.append(np.hstack((sec_forces[i*n_names+j], mirror_forces)))
new_widths.append(np.hstack((widths[i*n_names+j], widths[i*n_names+j][::-1])))
twist = self.twist[i*n_names+j]
new_twist.append(np.hstack((twist, twist[::-1][1:])))
self.mesh = new_mesh
if self.show_tube:
self.thickness = new_thickness
self.radius = new_r
self.vonmises = new_vonmises
if self.show_wing:
self.def_mesh = new_def_mesh
self.twist = new_twist
widths = new_widths
normals = new_normals
sec_forces = new_sec_forces
if self.show_wing:
for i in range(self.num_iters + 1):
for j, name in enumerate(names):
m_vals = self.mesh[i*n_names+j].copy()
cvec = m_vals[0, :, :] - m_vals[-1, :, :]
chords = np.sqrt(np.sum(cvec**2, axis=1))
chords = 0.5 * (chords[1:] + chords[:-1])
a = alpha[i]
cosa = np.cos(a)
sina = np.sin(a)
forces = np.sum(sec_forces[i*n_names+j], axis=0)
lift = (-forces[:, 0] * sina + forces[:, 2] * cosa) / \
widths[i*n_names+j]/0.5/rho[i]/v[i]**2
span = (m_vals[0, :, 1] / (m_vals[0, -1, 1] - m_vals[0, 0, 1]))
span = span - (span[0] + .5)
lift_area = np.sum(lift * (span[1:] - span[:-1]))
lift_ell = 4 * lift_area / np.pi * np.sqrt(1 - (2*span)**2)
self.lift.append(lift)
self.lift_ell.append(lift_ell)
wingspan = np.abs(m_vals[0, -1, 1] - m_vals[0, 0, 1])
self.AR.append(wingspan**2 / self.S_ref[i*n_names+j])
# recenter def_mesh points for better viewing
for i in range(self.num_iters + 1):
center = np.zeros((3))
for j in range(n_names):
center += np.mean(self.def_mesh[i*n_names+j], axis=(0,1))
for j in range(n_names):
self.def_mesh[i*n_names+j] -= center / n_names
self.cg[i] -= center / n_names
# recenter mesh points for better viewing
for i in range(self.num_iters + 1):
center = np.zeros((3))
for j in range(n_names):
center += np.mean(self.mesh[i*n_names+j], axis=(0,1))
for j in range(n_names):
self.mesh[i*n_names+j] -= center / n_names
if self.show_wing:
self.min_twist, self.max_twist = self.get_list_limits(self.twist)
diff = (self.max_twist - self.min_twist) * 0.05
self.min_twist -= diff
self.max_twist += diff
self.min_l, self.max_l = self.get_list_limits(self.lift)
self.min_le, self.max_le = self.get_list_limits(self.lift_ell)
self.min_l, self.max_l = min(self.min_l, self.min_le), max(self.max_l, self.max_le)
diff = (self.max_l - self.min_l) * 0.05
self.min_l -= diff
self.max_l += diff
if self.show_tube:
self.min_t, self.max_t = self.get_list_limits(self.thickness)
diff = (self.max_t - self.min_t) * 0.05
self.min_t -= diff
self.max_t += diff
self.min_vm, self.max_vm = self.get_list_limits(self.vonmises)
diff = (self.max_vm - self.min_vm) * 0.05
self.min_vm -= diff
self.max_vm += diff
def plot_sides(self):
if self.show_wing:
self.ax2.cla()
self.ax2.locator_params(axis='y',nbins=5)
self.ax2.locator_params(axis='x',nbins=3)
self.ax2.set_ylim([self.min_twist, self.max_twist])
self.ax2.set_xlim([-1, 1])
self.ax2.set_ylabel('twist', rotation="horizontal", ha="right")
self.ax3.cla()
self.ax3.text(0.05, 0.8, 'elliptical',
transform=self.ax3.transAxes, color='g')
self.ax3.locator_params(axis='y',nbins=4)
self.ax3.locator_params(axis='x',nbins=3)
self.ax3.set_ylim([self.min_l, self.max_l])
self.ax3.set_xlim([-1, 1])
self.ax3.set_ylabel('lift', rotation="horizontal", ha="right")
if self.show_tube:
self.ax4.cla()
self.ax4.locator_params(axis='y',nbins=4)
self.ax4.locator_params(axis='x',nbins=3)
self.ax4.set_ylim([self.min_t, self.max_t])
self.ax4.set_xlim([-1, 1])
self.ax4.set_ylabel('thickness', rotation="horizontal", ha="right")
self.ax5.cla()
max_yield_stress = 0.
for key, yield_stress in iteritems(self.yield_stress_dict):
self.ax5.axhline(yield_stress, c='r', lw=2, ls='--')
max_yield_stress = max(max_yield_stress, yield_stress)
self.ax5.locator_params(axis='y',nbins=4)
self.ax5.locator_params(axis='x',nbins=3)
self.ax5.set_ylim([self.min_vm, self.max_vm])
self.ax5.set_ylim([0, max_yield_stress*1.1])
self.ax5.set_xlim([-1, 1])
self.ax5.set_ylabel('von mises', rotation="horizontal", ha="right")
self.ax5.text(0.075, 1.1, 'failure limit',
transform=self.ax5.transAxes, color='r')
n_names = len(self.names)
for j, name in enumerate(self.names):
m_vals = self.mesh[self.curr_pos*n_names+j].copy()
span = m_vals[0, -1, 1] - m_vals[0, 0, 1]
rel_span = (m_vals[0, :, 1] - m_vals[0, 0, 1]) * 2 / span - 1
span_diff = ((m_vals[0, :-1, 1] + m_vals[0, 1:, 1]) / 2 - m_vals[0, 0, 1]) * 2 / span - 1
if self.show_wing:
t_vals = self.twist[self.curr_pos*n_names+j]
l_vals = self.lift[self.curr_pos*n_names+j]
le_vals = self.lift_ell[self.curr_pos*n_names+j]
self.ax2.plot(rel_span, t_vals, lw=2, c='b')
self.ax3.plot(rel_span, le_vals, '--', lw=2, c='g')
self.ax3.plot(span_diff, l_vals, lw=2, c='b')
if self.show_tube:
thick_vals = self.thickness[self.curr_pos*n_names+j]
vm_vals = self.vonmises[self.curr_pos*n_names+j]
self.ax4.plot(span_diff, thick_vals, lw=2, c='b')
self.ax5.plot(span_diff, vm_vals, lw=2, c='b')
def plot_wing(self):
n_names = len(self.names)
self.ax.cla()
az = self.ax.azim
el = self.ax.elev
dist = self.ax.dist
for j, name in enumerate(self.names):
mesh0 = self.mesh[self.curr_pos*n_names+j].copy()
self.ax.set_axis_off()
if self.show_wing:
def_mesh0 = self.def_mesh[self.curr_pos*n_names+j]
x = mesh0[:, :, 0]
y = mesh0[:, :, 1]
z = mesh0[:, :, 2]
try: # show deformed mesh option may not be available
if self.show_def_mesh.get():
x_def = def_mesh0[:, :, 0]
y_def = def_mesh0[:, :, 1]
z_def = def_mesh0[:, :, 2]
self.c2.grid(row=0, column=3, padx=5, sticky=Tk.W)
if self.ex_def.get():
z_def = (z_def - z) * 10 + z_def
def_mesh0 = (def_mesh0 - mesh0) * 30 + def_mesh0
else:
def_mesh0 = (def_mesh0 - mesh0) * 2 + def_mesh0
self.ax.plot_wireframe(x_def, y_def, z_def, rstride=1, cstride=1, color='k')
self.ax.plot_wireframe(x, y, z, rstride=1, cstride=1, color='k', alpha=.3)
else:
self.ax.plot_wireframe(x, y, z, rstride=1, cstride=1, color='k')
self.c2.grid_forget()
except:
self.ax.plot_wireframe(x, y, z, rstride=1, cstride=1, color='k')
cg = self.cg[self.curr_pos]
self.ax.scatter(cg[0], cg[1], cg[2], s=100, color='r')
if self.show_tube:
# Get the array of radii and thickness values for the FEM system
r0 = self.radius[self.curr_pos*n_names+j]
t0 = self.thickness[self.curr_pos*n_names+j]
# Create a normalized array of values for the colormap
colors = t0
colors = colors / np.max(colors)
# Set the number of rectangular patches on the cylinder
num_circ = 12
fem_origin = self.fem_origin_dict[name.split('.')[-1] + '_fem_origin']
# Get the number of spanwise nodal points
n = mesh0.shape[1]
# Create an array of angles around a circle
p = np.linspace(0, 2*np.pi, num_circ)
# This is just to show the deformed mesh if selected
if self.show_wing:
if self.show_def_mesh.get():
mesh0[:, :, 2] = def_mesh0[:, :, 2]
# Loop through each element in the FEM system
for i, thick in enumerate(t0):
# Get the radii describing the circles at each nodal point
r = np.array((r0[i], r0[i]))
R, P = np.meshgrid(r, p)
# Get the X and Z coordinates for all points around the circle
X, Z = R*np.cos(P), R*np.sin(P)
# Get the chord and center location for the FEM system
chords = mesh0[-1, :, 0] - mesh0[0, :, 0]
comp = fem_origin * chords + mesh0[0, :, 0]
# Add the location of the element centers to the circle coordinates
X[:, 0] += comp[i]
X[:, 1] += comp[i+1]
Z[:, 0] += fem_origin * (mesh0[-1, i, 2] - mesh0[0, i, 2]) + mesh0[0, i, 2]
Z[:, 1] += fem_origin * (mesh0[-1, i+1, 2] - mesh0[0, i+1, 2]) + mesh0[0, i+1, 2]
# Get the spanwise locations of the spar points
Y = np.empty(X.shape)
Y[:] = np.linspace(mesh0[0, i, 1], mesh0[0, i+1, 1], 2)
# Set the colors of the rectangular surfaces
col = np.zeros(X.shape)
col[:] = colors[i]
# Plot the rectangular surfaces for each individual FEM element
try:
self.ax.plot_surface(X, Y, Z, rstride=1, cstride=1,
facecolors=cm.viridis(col), linewidth=0)
except:
self.ax.plot_surface(X, Y, Z, rstride=1, cstride=1,
facecolors=cm.coolwarm(col), linewidth=0)
lim = 0.
for j in range(n_names):
ma = np.max(self.mesh[self.curr_pos*n_names+j], axis=(0,1,2))
if ma > lim:
lim = ma
lim /= float(zoom_scale)
self.ax.auto_scale_xyz([-lim, lim], [-lim, lim], [-lim, lim])
self.ax.set_title("Major Iteration: {}".format(self.curr_pos))
round_to_n = lambda x, n: round(x, -int(np.floor(np.log10(abs(x)))) + (n - 1))
if self.opt:
obj_val = round_to_n(self.obj[self.curr_pos], 7)
self.ax.text2D(.55, .05, self.obj_key + ': {}'.format(obj_val),
transform=self.ax.transAxes, color='k')
self.ax.view_init(elev=el, azim=az) # Reproduce view
self.ax.dist = dist
def save_video(self):
FFMpegWriter = manimation.writers['ffmpeg']
metadata = dict(title='Movie', artist='Matplotlib')
writer = FFMpegWriter(fps=5, metadata=metadata, bitrate=3000)
with writer.saving(self.f, "movie.mp4", 100):
self.curr_pos = 0
self.update_graphs()
self.f.canvas.draw()
plt.draw()
for i in range(10):
writer.grab_frame()
for i in range(self.num_iters):
self.curr_pos = i
self.update_graphs()
self.f.canvas.draw()
plt.draw()
writer.grab_frame()
self.curr_pos = self.num_iters
self.update_graphs()
self.f.canvas.draw()
plt.draw()
for i in range(20):
writer.grab_frame()
def update_graphs(self, e=None):
if e is not None:
self.curr_pos = int(e)
self.curr_pos = self.curr_pos % (self.num_iters + 1)
self.plot_wing()
self.plot_sides()
self.canvas.show()
def check_length(self):
# Load the current sqlitedict
db = sqlitedict.SqliteDict(self.db_name, 'iterations')
# Get the number of current iterations
# Minus one because OpenMDAO uses 1-indexing
self.num_iters = int(db.keys()[-1].split('|')[-1])
def get_list_limits(self, input_list):
list_min = 1.e20
list_max = -1.e20
for list_ in input_list:
mi = np.min(list_)
if mi < list_min:
list_min = mi
ma = np.max(list_)
if ma > list_max:
list_max = ma
return list_min, list_max
def auto_ref(self):
"""
Automatically refreshes the history file, which is
useful if examining a running optimization.
"""
if self.var_ref.get():
self.root.after(500, self.auto_ref)
self.check_length()
self.update_graphs()
# Check if the sqlitedict file has change and if so, fully
# load in the new file.
if self.num_iters > self.old_n:
self.load_db()
self.old_n = self.num_iters
self.draw_slider()
def save_image(self):
fname = 'fig' + '.pdf'
plt.savefig(fname)
def quit(self):
"""
Destroy GUI window cleanly if quit button pressed.
"""
self.root.quit()
self.root.destroy()
def draw_slider(self):
# scale to choose iteration to view
self.w = Tk.Scale(
self.options_frame,
from_=0, to=self.num_iters,
orient=Tk.HORIZONTAL,
resolution=1,
font=tkFont.Font(family="Helvetica", size=10),
command=self.update_graphs,
length=200)
if self.curr_pos == self.num_iters - 1 or self.curr_pos == 0 or self.var_ref.get():
self.curr_pos = self.num_iters
self.w.set(self.curr_pos)
self.w.grid(row=0, column=1, padx=5, sticky=Tk.W)
def draw_GUI(self):
"""
Create the frames and widgets in the bottom section of the canvas.
"""
font = tkFont.Font(family="Helvetica", size=10)
lab_font = Tk.Label(
self.options_frame,
text="Iteration number:",
font=font)
lab_font.grid(row=0, column=0, sticky=Tk.S)
self.draw_slider()
if self.show_wing and self.show_tube:
# checkbox to show deformed mesh
self.show_def_mesh = Tk.IntVar()
c1 = Tk.Checkbutton(
self.options_frame,
text="Show deformed mesh",
variable=self.show_def_mesh,
command=self.update_graphs,
font=font)
c1.grid(row=0, column=2, padx=5, sticky=Tk.W)
# checkbox to exaggerate deformed mesh
self.ex_def = Tk.IntVar()
self.c2 = Tk.Checkbutton(
self.options_frame,
text="Exaggerate deformations",
variable=self.ex_def,
command=self.update_graphs,
font=font)
self.c2.grid(row=0, column=3, padx=5, sticky=Tk.W)
# Option to automatically refresh history file
# especially useful for currently running optimizations
self.var_ref = Tk.IntVar()
# self.var_ref.set(1)
c11 = Tk.Checkbutton(
self.options_frame,
text="Automatically refresh",
variable=self.var_ref,
command=self.auto_ref,
font=font)
c11.grid(row=0, column=4, sticky=Tk.W, pady=6)
button = Tk.Button(
self.options_frame,
text='Save video',
command=self.save_video,
font=font)
button.grid(row=0, column=5, padx=5, sticky=Tk.W)
button4 = Tk.Button(
self.options_frame,
text='Save image',
command=self.save_image,
font=font)
button4.grid(row=0, column=6, padx=5, sticky=Tk.W)
button5 = Tk.Button(
self.options_frame,
text='Quit',
command=self.quit,
font=font)
button5.grid(row=0, column=7, padx=5, sticky=Tk.W)
self.auto_ref()
def disp_plot(db_name):
disp = Display(db_name)
disp.draw_GUI()
plt.tight_layout()
disp.root.protocol("WM_DELETE_WINDOW", disp.quit)
Tk.mainloop()
if __name__ == '__main__':
disp_plot(db_name)