forked from Lightning-AI/pytorch-lightning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
trainer.py
532 lines (430 loc) · 22.7 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
import os
from collections.abc import Mapping
from functools import partial
from typing import Any, cast, Iterable, List, Literal, Optional, Tuple, Union
import torch
from lightning_utilities import apply_to_collection, is_overridden
from tqdm import tqdm
import lightning as L
from lightning.fabric.accelerators import Accelerator
from lightning.fabric.loggers import Logger
from lightning.fabric.strategies import Strategy
from lightning.fabric.wrappers import _unwrap_objects
class MyCustomTrainer:
def __init__(
self,
accelerator: Union[str, Accelerator] = "auto",
strategy: Union[str, Strategy] = "auto",
devices: Union[List[int], str, int] = "auto",
precision: Union[str, int] = "32-true",
plugins: Optional[Union[str, Any]] = None,
callbacks: Optional[Union[List[Any], Any]] = None,
loggers: Optional[Union[Logger, List[Logger]]] = None,
max_epochs: Optional[int] = 1000,
max_steps: Optional[int] = None,
grad_accum_steps: int = 1,
limit_train_batches: Union[int, float] = float("inf"),
limit_val_batches: Union[int, float] = float("inf"),
validation_frequency: int = 1,
use_distributed_sampler: bool = True,
checkpoint_dir: str = "./checkpoints",
checkpoint_frequency: int = 1,
) -> None:
"""Exemplary Trainer with Fabric. This is a very simple trainer focused on readablity but with reduced
featureset. As a trainer with more included features, we recommend using the
:class:`lightning.pytorch.Trainer`.
Args:
accelerator: The hardware to run on. Possible choices are:
``"cpu"``, ``"cuda"``, ``"mps"``, ``"gpu"``, ``"tpu"``, ``"auto"``.
strategy: Strategy for how to run across multiple devices. Possible choices are:
``"dp"``, ``"ddp"``, ``"ddp_spawn"``, ``"deepspeed"``, ``"fsdp"``.
devices: Number of devices to train on (``int``),
which GPUs to train on (``list`` or ``str``), or ``"auto"``.
The value applies per node.
precision: Double precision (``"64"``), full precision (``"32"``), half precision AMP (``"16-mixed"``),
or bfloat16 precision AMP (``"bf16-mixed"``).
plugins: One or several custom plugins
callbacks: A single callback or a list of callbacks. The following hooks are supported:
- on_train_epoch_start
- on train_epoch_end
- on_train_batch_start
- on_train_batch_end
- on_before_backward
- on_after_backward
- on_before_zero_grad
- on_before_optimizer_step
- on_validation_model_eval
- on_validation_model_train
- on_validation_epoch_start
- on_validation_epoch_end
- on_validation_batch_start
- on_validation_batch_end
loggers: A single logger or a list of loggers. See :meth:`~lightning.fabric.fabric.Fabric.log` for more
information.
max_epochs: The maximum number of epochs to train
max_steps: The maximum number of (optimizer) steps to train
grad_accum_steps: How many batches to process before each optimizer step
limit_train_batches: Limits the number of train batches per epoch
If greater than number of batches in the dataloader, this has no effect.
limit_val_batches: Limits the number of validation batches per epoch.
If greater than number of batches in the dataloader, this has no effect.
validation_frequency: How many epochs to run before each validation epoch.
use_distributed_sampler: Wraps the sampler of each dataloader with a respective distributed-aware sampler
in case of distributed training.
checkpoint_dir: Directory to store checkpoints to.
checkpoint_frequency: How many epochs to run before each checkpoint is written.
Warning:
callbacks written for the lightning trainer (especially making assumptions on the trainer), won't work!
"""
self.fabric = L.Fabric(
accelerator=accelerator,
strategy=strategy,
devices=devices,
precision=precision,
plugins=plugins,
callbacks=callbacks,
loggers=loggers,
)
self.global_step = 0
self.grad_accum_steps: int = grad_accum_steps
self.current_epoch = 0
self.max_epochs = max_epochs
self.max_steps = max_steps
self.should_stop = False
# ensures limit_X_batches is either int or inf
if not isinstance(limit_train_batches, int):
assert limit_train_batches == float("inf")
if not isinstance(limit_val_batches, int):
assert limit_val_batches == float("inf")
self.limit_train_batches = limit_train_batches
self.limit_val_batches = limit_val_batches
self.validation_frequency = validation_frequency
self.use_distributed_sampler = use_distributed_sampler
self._current_train_return: Union[torch.Tensor, Mapping[str, Any]] = {}
self._current_val_return: Optional[Union[torch.Tensor, Mapping[str, Any]]] = {}
self.checkpoint_dir = checkpoint_dir
self.checkpoint_frequency = checkpoint_frequency
def fit(
self,
model: L.LightningModule,
train_loader: torch.utils.data.DataLoader,
val_loader: torch.utils.data.DataLoader,
ckpt_path: Optional[str] = None,
):
"""The main entrypoint of the trainer, triggering the actual training.
Args:
model: the LightningModule to train.
Can have the same hooks as :attr:`callbacks` (see :meth:`MyCustomTrainer.__init__`).
train_loader: the training dataloader. Has to be an iterable returning batches.
val_loader: the validation dataloader. Has to be an iterable returning batches.
If not specified, no validation will run.
ckpt_path: Path to previous checkpoints to resume training from.
If specified, will always look for the latest checkpoint within the given directory.
"""
self.fabric.launch()
# setup dataloaders
train_loader = self.fabric.setup_dataloaders(train_loader, use_distributed_sampler=self.use_distributed_sampler)
if val_loader is not None:
val_loader = self.fabric.setup_dataloaders(val_loader, use_distributed_sampler=self.use_distributed_sampler)
# setup model and optimizer
if isinstance(self.fabric.strategy, L.fabric.strategies.fsdp.FSDPStrategy):
# currently, there is no way to support fsdp with model.configure_optimizers in fabric
# as it would require fabric to hold a reference to the model, which we don't want to.
raise NotImplementedError("BYOT currently does not support FSDP")
else:
optimizer, scheduler_cfg = self._parse_optimizers_schedulers(model.configure_optimizers())
assert optimizer is not None
model, optimizer = self.fabric.setup(model, optimizer)
# assemble state (current epoch and global step will be added in save)
state = {"model": model, "optim": optimizer, "scheduler": scheduler_cfg}
# load last checkpoint if available
if ckpt_path is not None and os.path.isdir(ckpt_path):
latest_checkpoint_path = self.get_latest_checkpoint(self.checkpoint_dir)
if latest_checkpoint_path is not None:
self.load(state, latest_checkpoint_path)
# check if we even need to train here
if self.max_epochs is not None and self.current_epoch >= self.max_epochs:
self.should_stop = True
while not self.should_stop:
self.train_loop(
model, optimizer, train_loader, limit_batches=self.limit_train_batches, scheduler_cfg=scheduler_cfg
)
if self.should_validate:
self.val_loop(model, val_loader, limit_batches=self.limit_val_batches)
self.step_scheduler(model, scheduler_cfg, level="epoch", current_value=self.current_epoch)
self.current_epoch += 1
# stopping condition on epoch level
if self.max_epochs is not None and self.current_epoch >= self.max_epochs:
self.should_stop = True
self.save(state)
# reset for next fit call
self.should_stop = False
def train_loop(
self,
model: L.LightningModule,
optimizer: torch.optim.Optimizer,
train_loader: torch.utils.data.DataLoader,
limit_batches: Union[int, float] = float("inf"),
scheduler_cfg: Optional[Mapping[str, Union[L.fabric.utilities.types.LRScheduler, bool, str, int]]] = None,
):
"""The training loop running a single training epoch.
Args:
model: the LightningModule to train
optimizer: the optimizer, optimizing the LightningModule.
train_loader: The dataloader yielding the training batches.
limit_batches: Limits the batches during this training epoch.
If greater then the number of batches in the ``train_loader``, this has no effect.
scheduler_cfg: The learning rate scheduler configuration.
Have a look at :meth:`lightning.pytorch.LightninModule.configure_optimizers` for supported values.
"""
self.fabric.call("on_train_epoch_start")
iterable = self.progbar_wrapper(
train_loader, total=min(len(train_loader), limit_batches), desc=f"Epoch {self.current_epoch}"
)
for batch_idx, batch in enumerate(iterable):
# end epoch if stopping training completely or max batches for this epoch reached
if self.should_stop or batch_idx >= limit_batches:
self.fabric.call("on_train_epoch_end")
return
self.fabric.call("on_train_batch_start", batch, batch_idx)
# check if optimizer should step in gradient accumulation
should_optim_step = self.global_step % self.grad_accum_steps == 0
if should_optim_step:
# currently only supports a single optimizer
self.fabric.call("on_before_optimizer_step", optimizer, 0)
# optimizer step runs train step internally through closure
optimizer.step(partial(self.training_step, model=model, batch=batch, batch_idx=batch_idx))
self.fabric.call("on_before_zero_grad", optimizer)
optimizer.zero_grad()
else:
# gradient accumulation -> no optimizer step
self.training_step(model=model, batch=batch, batch_idx=batch_idx)
self.fabric.call("on_train_batch_end", self._current_train_return, batch, batch_idx)
# this guard ensures, we only step the scheduler once per global step
if should_optim_step:
self.step_scheduler(model, scheduler_cfg, level="step", current_value=self.global_step)
# add output values to progress bar
self._format_iterable(iterable, self._current_train_return, "train")
# only increase global step if optimizer stepped
self.global_step += int(should_optim_step)
# stopping criterion on step level
if self.max_steps is not None and self.global_step >= self.max_steps:
self.should_stop = True
break
self.fabric.call("on_train_epoch_end")
def val_loop(
self,
model: L.LightningModule,
val_loader: Optional[torch.utils.data.DataLoader],
limit_batches: Union[int, float] = float("inf"),
):
"""The validation loop ruunning a single validation epoch.
Args:
model: the LightningModule to evaluate
val_loader: The dataloader yielding the validation batches.
limit_batches: Limits the batches during this validation epoch.
If greater then the number of batches in the ``val_loader``, this has no effect.
"""
# no validation if val_loader wasn't passed
if val_loader is None:
return
# no validation but warning if val_loader was passed, but validation_step not implemented
elif val_loader is not None and not is_overridden("validation_step", _unwrap_objects(model), L.LightningModule):
L.fabric.utilities.rank_zero_warn(
"Your LightningModule does not have a validation_step implemented, "
"but you passed a validation dataloder. Skipping Validation."
)
return
self.fabric.call("on_validation_model_eval") # calls `model.eval()`
torch.set_grad_enabled(False)
self.fabric.call("on_validation_epoch_start")
iterable = self.progbar_wrapper(val_loader, total=min(len(val_loader), limit_batches), desc="Validation")
for batch_idx, batch in enumerate(iterable):
# end epoch if stopping training completely or max batches for this epoch reached
if self.should_stop or batch_idx >= limit_batches:
self.fabric.call("on_validation_epoch_end")
return
self.fabric.call("on_validation_batch_start", batch, batch_idx)
out = model.validation_step(batch, batch_idx)
# avoid gradients in stored/accumulated values -> prevents potential OOM
out = apply_to_collection(out, torch.Tensor, lambda x: x.detach())
self.fabric.call("on_validation_batch_end", out, batch, batch_idx)
self._current_val_return = out
self._format_iterable(iterable, self._current_val_return, "val")
self.fabric.call("on_validation_epoch_end")
self.fabric.call("on_validation_model_train")
torch.set_grad_enabled(True)
def training_step(self, model: L.LightningModule, batch: Any, batch_idx: int) -> torch.Tensor:
"""A single training step, running forward and backward. The optimizer step is called separately, as this
is given as a closure to the optimizer step.
Args:
model: the lightning module to train
batch: the batch to run the forward on
batch_idx: index of the current batch w.r.t the current epoch
"""
outputs: Union[torch.Tensor, Mapping[str, Any]] = model.training_step(batch, batch_idx=batch_idx)
loss = outputs if isinstance(outputs, torch.Tensor) else outputs["loss"]
self.fabric.call("on_before_backward", loss)
self.fabric.backward(loss)
self.fabric.call("on_after_backward")
# avoid gradients in stored/accumulated values -> prevents potential OOM
self._current_train_return = apply_to_collection(outputs, dtype=torch.Tensor, function=lambda x: x.detach())
return loss
def step_scheduler(
self,
model: L.LightningModule,
scheduler_cfg: Optional[Mapping[str, Union[L.fabric.utilities.types.LRScheduler, bool, str, int]]],
level: Literal["step", "epoch"],
current_value: int,
) -> None:
"""Steps the learning rate scheduler if necessary.
Args:
model: The LightningModule to train
scheduler_cfg: The learning rate scheduler configuration.
Have a look at :meth:`lightning.pytorch.LightninModule.configure_optimizers` for supported values.
level: whether we are trying to step on epoch- or step-level
current_value: Holds the current_epoch if ``level==epoch``, else holds the ``global_step``
"""
# no scheduler
if scheduler_cfg is None:
return
# wrong interval (step vs. epoch)
if scheduler_cfg["interval"] != level:
return
# right interval, but wrong step wrt frequency
if current_value % cast(int, scheduler_cfg["frequency"]) != 0:
return
# assemble potential monitored values
possible_monitor_vals = {None: None}
if isinstance(self._current_train_return, torch.Tensor):
possible_monitor_vals.update("train_loss", self._current_train_return)
elif isinstance(self._current_train_return, Mapping):
possible_monitor_vals.update({"train_" + k: v for k, v in self._current_train_return.items()})
if isinstance(self._current_val_return, torch.Tensor):
possible_monitor_vals.update("val_loss", self._current_val_return)
elif isinstance(self._current_val_return, Mapping):
possible_monitor_vals.update({"val_" + k: v for k, v in self._current_val_return.items()})
try:
monitor = possible_monitor_vals[cast(Optional[str], scheduler_cfg["monitor"])]
except KeyError as e:
possible_keys = list(possible_monitor_vals.keys())
raise KeyError(
f"monitor {scheduler_cfg['monitor']} is invalid. Possible values are {possible_keys}."
) from e
# rely on model hook for actual step
model.lr_scheduler_step(scheduler_cfg["scheduler"], monitor)
@property
def should_validate(self) -> bool:
"""Whether to currently run validation."""
return self.current_epoch % self.validation_frequency == 0
def progbar_wrapper(self, iterable: Iterable, total: int, **kwargs: Any):
"""Wraps the iterable with tqdm for global rank zero.
Args:
iterable: the iterable to wrap with tqdm
total: the total length of the iterable, necessary in case the number of batches was limited.
"""
if self.fabric.is_global_zero:
return tqdm(iterable, total=total, **kwargs)
return iterable
def load(self, state: Optional[Mapping], path: str) -> None:
"""Loads a checkpoint from a given file into state.
Args:
state: a mapping contaning model, optimizer and lr scheduler
path: the path to load the checkpoint from
"""
if state is None:
state = {}
remainder = self.fabric.load(path, state)
self.global_step = remainder.pop("global_step")
self.current_epoch = remainder.pop("current_epoch")
if remainder:
raise RuntimeError(f"Unused Checkpoint Values: {remainder}")
def save(self, state: Optional[Mapping]) -> None:
"""Saves a checkpoint to the ``checkpoint_dir``
Args:
state: A mapping containing model, optimizer and lr scheduler.
"""
if state is None:
state = {}
state.update(global_step=self.global_step, current_epoch=self.current_epoch)
self.fabric.save(os.path.join(self.checkpoint_dir, f"epoch-{self.current_epoch:04d}.ckpt"), state)
@staticmethod
def get_latest_checkpoint(checkpoint_dir: str) -> Optional[str]:
"""Returns the latest checkpoint from the ``checkpoint_dir``
Args:
checkpoint_dir: the directory to search for checkpoints
"""
if not os.path.isdir(checkpoint_dir):
return None
items = sorted(os.listdir(checkpoint_dir))
if not items:
return None
return os.path.join(checkpoint_dir, items[-1])
def _parse_optimizers_schedulers(
self, configure_optim_output
) -> Tuple[
Optional[L.fabric.utilities.types.Optimizable],
Optional[Mapping[str, Union[L.fabric.utilities.types.LRScheduler, bool, str, int]]],
]:
"""Recursively parses the output of :meth:`lightning.pytorch.LightningModule.configure_optimizers`.
Args:
configure_optim_output: The output of ``configure_optimizers``.
For supported values, please refer to :meth:`lightning.pytorch.LightningModule.configure_optimizers`.
"""
_lr_sched_defaults = {"interval": "epoch", "frequency": 1, "monitor": "val_loss"}
# single optimizer
if isinstance(configure_optim_output, L.fabric.utilities.types.Optimizable):
return configure_optim_output, None
# single lr scheduler
elif isinstance(configure_optim_output, L.fabric.utilities.types.LRScheduler):
return None, _lr_sched_defaults.update(scheduler=configure_optim_output)
# single lr scheduler config
elif isinstance(configure_optim_output, Mapping):
_lr_sched_defaults.update(configure_optim_output)
return None, _lr_sched_defaults
# list or tuple
elif isinstance(configure_optim_output, (list, tuple)):
if all(
[isinstance(_opt_cand, L.fabric.utilities.types.Optimizable) for _opt_cand in configure_optim_output]
):
# single optimizer in list
if len(configure_optim_output) == 1:
return configure_optim_output[0][0], None
raise NotImplementedError("BYOT only supports a single optimizer")
elif all(
[
isinstance(_lr_cand, (L.fabric.utilities.types.LRScheduler, Mapping))
for _lr_cand in configure_optim_output
]
):
# single scheduler in list
if len(configure_optim_output) == 1:
return None, self._parse_optimizers_schedulers(configure_optim_output[0])[1]
# optimizer and lr scheduler
elif len(configure_optim_output) == 2:
opt_cands, lr_cands = (
self._parse_optimizers_schedulers(configure_optim_output[0])[0],
self._parse_optimizers_schedulers(configure_optim_output[1])[1],
)
return opt_cands, lr_cands
return None, None
@staticmethod
def _format_iterable(
prog_bar, candidates: Optional[Union[torch.Tensor, Mapping[str, Union[torch.Tensor, float, int]]]], prefix: str
):
"""Adds values as postfix string to progressbar.
Args:
prog_bar: a progressbar (on global rank zero) or an iterable (every other rank).
candidates: the values to add as postfix strings to the progressbar.
prefix: the prefix to add to each of these values.
"""
if isinstance(prog_bar, tqdm) and candidates is not None:
postfix_str = ""
float_candidates = apply_to_collection(candidates, torch.Tensor, lambda x: x.item())
if isinstance(candidates, torch.Tensor):
postfix_str += f" {prefix}_loss: {float_candidates:.3f}"
elif isinstance(candidates, Mapping):
for k, v in float_candidates.items():
postfix_str += f" {prefix}_{k}: {v:.3f}"
if postfix_str:
prog_bar.set_postfix_str(postfix_str)