-
Notifications
You must be signed in to change notification settings - Fork 4
/
config.py
316 lines (269 loc) · 14.6 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
"""
Configuration file!
"""
import os
from argparse import ArgumentParser
import numpy as np
import subprocess
ROOT_PATH = os.path.dirname(os.path.realpath(__file__))
DATA_PATH = os.path.join(ROOT_PATH, 'data')
def path(fn):
return os.path.join(DATA_PATH, fn)
def stanford_path(fn):
return os.path.join(DATA_PATH, 'stanford_filtered', fn)
# =============================================================================
# Update these with where your data is stored ~~~~~~~~~~~~~~~~~~~~~~~~~
VG_IMAGES = os.path.join(DATA_PATH, 'VG_100K') # '/home/rowan/datasets2/VG_100K_2/VG_100K'
VG_DEPTH_IMAGES = os.path.join(DATA_PATH, 'vg_depth_1024/VG_100K') #visual_genome/depth_images_512/' # -- (ADDED) Depth images path
# for required_data_folder in [VG_IMAGES, VG_DEPTH_IMAGES]:
# if not os.path.exists(required_data_folder):
# print("Directory ", required_data_folder, " should be created!")
# if required_data_folder == VG_DEPTH_IMAGES:
# os.mkdir(os.path.join(DATA_PATH, 'vg_depth_1024'))
# os.mkdir(os.path.join(DATA_PATH, 'vg_depth_1024/VG_100K'))
# sourcedir = "/nfs/data/sharifza/data/depth/VG_100K/vg_depth_1024/VG_100K/"
# elif required_data_folder == VG_IMAGES:
# os.mkdir(VG_IMAGES)
# sourcedir = "/nfs/data/koner/data/VG_100K/"
#
# print("Now copying images from NFS to local...")
# # Handle the source folders for copying
#
# # Call rsync to copy the data while showing a progress bar.
# subprocess.call(["rsync", "-r", "--info=progress2", sourcedir, required_data_folder])
# print("Copying finished!")
# else:
# print("Directory ", required_data_folder, " already exists")
RCNN_CHECKPOINT_FN = path('faster_rcnn_500k.h5')
IM_DATA_FN = stanford_path('image_data.json')
VG_SGG_FN = stanford_path('VG-SGG.h5')
VG_SGG_DICT_FN = stanford_path('VG-SGG-dicts.json')
PROPOSAL_FN = stanford_path('proposals.h5')
COCO_PATH = '/home/rowan/datasets/mscoco'
# =============================================================================
# =============================================================================
MODES = ('sgdet', 'sgcls', 'predcls')
# -- (ADDED) Data fusion mode
FUSION_MODES = ('rgb_only', 'depth_only', 'fusion')
# -- (ADDED) Depth models
DEPTH_MODELS = ('alexnet', 'resnet18', 'resnet50', 'vgg', 'sqznet')
BOX_SCALE = 1024 # Scale at which we have the boxes
IM_SCALE = 592 # Our images will be resized to this res without padding
# Proposal assignments
BG_THRESH_HI = 0.5
BG_THRESH_LO = 0.0
RPN_POSITIVE_OVERLAP = 0.7
# IOU < thresh: negative example
RPN_NEGATIVE_OVERLAP = 0.3
# Max number of foreground examples
RPN_FG_FRACTION = 0.5
FG_FRACTION = 0.25
# Total number of examples
RPN_BATCHSIZE = 256
ROIS_PER_IMG = 256
REL_FG_FRACTION = 0.25
RELS_PER_IMG = 256
RELS_PER_IMG_REFINE = 64
BATCHNORM_MOMENTUM = 0.01
ANCHOR_SIZE = 16
ANCHOR_RATIOS = (0.23232838, 0.63365731, 1.28478321, 3.15089189) #(0.5, 1, 2)
ANCHOR_SCALES = (2.22152954, 4.12315647, 7.21692515, 12.60263013, 22.7102731) #(4, 8, 16, 32)
class ModelConfig(object):
"""Wrapper class for model hyperparameters."""
def __init__(self):
"""
Defaults
"""
self.asm_num = None
self.coco = None
self.ckpt = None
self.extra_ckpt = None
self.save_dir = None
self.lr = None
self.batch_size = None
self.val_size = None
self.l2 = None
self.clip = None
self.num_gpus = None
self.num_workers = None
self.print_interval = None
self.gt_box = None
self.mode = None
self.refine = None
self.ad3 = False
self.test = False
self.adam = False
self.multi_pred=False
self.cache = None
self.model = None
self.use_proposals=False
self.use_resnet=False
self.use_tanh=False
self.use_bias = False
self.limit_vision=True
self.num_epochs=None
self.old_feats=False
self.order=None
self.det_ckpt=None
self.nl_edge=None
self.nl_obj=None
self.hidden_dim=None
self.pass_in_obj_feats_to_decoder = None
self.pass_in_obj_feats_to_edge = None
self.pooling_dim = None
self.rec_dropout = None
self.freeze_base = False
self.PKG = False
self.visual_share = None
self.all_share = None
self.visual_share_num = None
self.destroy_vis = None
self.use_union = None
self.val_iteration = None
self.allasm = False
self.sigmoid_gate = False
self.yesFuse = False
self.hard_att = False
self.sigmoid_uncertainty = False
self.n_drop = False
# -- (ADDED) add depth related parameters
self.fusion_mode = None
self.depth_model = None
self.pretrained_depth = False
self.tensorboard_ex = False
self.enable_po = False
self.izs_file = None
self.izs_vis_discard = False
self.enable_gates = False
self.parser = self.setup_parser()
self.args = vars(self.parser.parse_args())
print("~~~~~~~~ Hyperparameters used: ~~~~~~~")
for x, y in self.args.items():
print("{} : {}".format(x, y))
# -- (ADDED) print dataset path
print("RGB dataset path: ", VG_IMAGES)
# print("Depth dataset path: ", VG_DEPTH_IMAGES)
self.__dict__.update(self.args)
if len(self.ckpt) != 0:
self.ckpt = os.path.join(ROOT_PATH, self.ckpt)
else:
self.ckpt = None
if len(self.extra_ckpt) != 0:
self.extra_ckpt = os.path.join(ROOT_PATH, self.extra_ckpt)
else:
self.extra_ckpt = None
if len(self.cache) != 0:
self.cache = os.path.join(ROOT_PATH, self.cache)
else:
self.cache = None
if len(self.save_dir) == 0:
self.save_dir = None
else:
self.save_dir = os.path.join(ROOT_PATH, self.save_dir)
if not os.path.exists(self.save_dir):
os.mkdir(self.save_dir)
assert self.val_size >= 0
if self.mode not in MODES:
raise ValueError("Invalid mode: mode must be in {}".format(MODES))
# -- (ADDED) add depth_fc model
if self.model not in ('motifnet', 'stanford', 'sharifza', 'store_features',
# -- Depth models
'class',
'depth_fc',
'depth_fc_vision',
'depth_vision'):
raise ValueError("Invalid model {}".format(self.model))
if self.ckpt is not None and not os.path.exists(self.ckpt):
raise ValueError("Ckpt file ({}) doesnt exist".format(self.ckpt))
if self.extra_ckpt is not None and not os.path.exists(self.extra_ckpt):
raise ValueError("Extra Ckpt file ({}) doesnt exist".format(self.extra_ckpt))
# -- (ADDED) check if the provided fusion mode is correct
if self.fusion_mode not in FUSION_MODES:
raise ValueError("Invalid data fusion mode: mode must be in {}".format(FUSION_MODES))
# -- (ADDED) check if the provided depth model is valid
if self.depth_model not in DEPTH_MODELS:
raise ValueError("Invalid depth model: model must be in {}".format(DEPTH_MODELS))
# -- (ADDED) check if the provided inverse-zershot file exists
if self.izs_file is not None and not os.path.exists(self.izs_file):
raise ValueError("Inverse-Zeroshot split ({}) doesnt exist".format(self.izs_file))
def setup_parser(self):
"""
Sets up an argument parser
:return:
"""
parser = ArgumentParser(description='training code')
# Options to deprecate
parser.add_argument('-asm', dest='asm_num', help='asm num', type=int, default=2)
parser.add_argument('-coco', dest='coco', help='Use COCO (default to VG)', action='store_true')
parser.add_argument('-ckpt', dest='ckpt', help='Filename to load from', type=str, default='')
parser.add_argument('-det_ckpt', dest='det_ckpt', help='Filename to load detection parameters from', type=str, default='')
parser.add_argument('-extra_ckpt', dest='extra_ckpt', help='Filename to load extra checkpoint from', type=str,
default='')
parser.add_argument('-save_dir', dest='save_dir',
help='Directory to save things to, such as checkpoints/save', default='', type=str)
parser.add_argument('-ngpu', dest='num_gpus', help='cuantos GPUs tienes', type=int, default=3)
parser.add_argument('-nwork', dest='num_workers', help='num processes to use as workers', type=int, default=1)
parser.add_argument('-lr', dest='lr', help='learning rate', type=float, default=1e-3)
parser.add_argument('-b', dest='batch_size', help='batch size per GPU',type=int, default=2)
parser.add_argument('-val_size', dest='val_size', help='val size to use (if 0 we wont use val)', type=int, default=5000)
parser.add_argument('-l2', dest='l2', help='weight decay', type=float, default=1e-4)
parser.add_argument('-clip', dest='clip', help='gradients will be clipped to have norm less than this', type=float, default=5.0)
parser.add_argument('-p', dest='print_interval', help='print during training', type=int,
default=100)
parser.add_argument('-m', dest='mode', help='mode \in {sgdet, sgcls, predcls}', type=str,
default='sgdet')
parser.add_argument('-model', dest='model', help='which model to use? (motifnet, stanford). If you want to use the baseline (NoContext) model, then pass in motifnet here, and nl_obj, nl_edge=0', type=str,
default='motifnet')
parser.add_argument('-old_feats', dest='old_feats', help='Use the original image features for the edges', action='store_true')
parser.add_argument('-order', dest='order', help='Linearization order for Rois (confidence -default, size, random)',
type=str, default='confidence')
parser.add_argument('-cache', dest='cache', help='where should we cache predictions', type=str,
default='')
parser.add_argument('-gt_box', dest='gt_box', help='use gt boxes during training', action='store_true')
parser.add_argument('-limit_vision', dest='limit_vision', help='limit vision', action='store_false')
parser.add_argument('-adam', dest='adam', help='use adam. Not recommended', action='store_true')
parser.add_argument('-test', dest='test', help='test set', action='store_true')
parser.add_argument('-multipred', dest='multi_pred', help='Allow multiple predicates per pair of box0, box1.', action='store_true')
parser.add_argument('-nepoch', dest='num_epochs', help='Number of epochs to train the model for',type=int, default=25)
parser.add_argument('-resnet', dest='use_resnet', help='use resnet instead of VGG', action='store_true')
parser.add_argument('-proposals', dest='use_proposals', help='Use Xu et als proposals', action='store_true')
parser.add_argument('-nl_obj', dest='nl_obj', help='Num object layers', type=int, default=1)
parser.add_argument('-nl_edge', dest='nl_edge', help='Num edge layers', type=int, default=2)
parser.add_argument('-hidden_dim', dest='hidden_dim', help='Num edge layers', type=int, default=256)
parser.add_argument('-pooling_dim', dest='pooling_dim', help='Dimension of pooling', type=int, default=4096)
parser.add_argument('-pass_in_obj_feats_to_decoder', dest='pass_in_obj_feats_to_decoder', action='store_true')
parser.add_argument('-pass_in_obj_feats_to_edge', dest='pass_in_obj_feats_to_edge', action='store_true')
parser.add_argument('-rec_dropout', dest='rec_dropout', help='recurrent dropout to add', type=float, default=0.1)
parser.add_argument('-use_bias', dest='use_bias', action='store_true')
parser.add_argument('-use_tanh', dest='use_tanh', action='store_true')
parser.add_argument('-use_union', dest='use_union', action='store_true')
parser.add_argument('-freeze_base', dest='freeze_base', action='store_true')
parser.add_argument('-destroy_vis', dest='destroy_vis', action='store_true')
parser.add_argument('-PKG', dest='PKG', action='store_true')
parser.add_argument('-visual_share', dest='visual_share', help='share of visual data to use', type=float,
default=1.0)
parser.add_argument('-all_share', dest='all_share', help='share of all data to use', type=float,
default=1.0)
parser.add_argument('-val_it', dest='val_iteration', help='how often to validate during training', type=float,
default=1)
parser.add_argument('-allasm', dest='allasm', help='Should we print all assimilation results?', action='store_true')
# -- (ADDED) Add `fusion_mode` and `depth_model` arguments
parser.add_argument('-fusion_mode', dest='fusion_mode', help='data fusion mode \in {rgb_only, depth_only, fusion}', type=str,
default='rgb_only')
parser.add_argument('-depth_model', dest='depth_model', help='depth model \in {alexnet, resnet, vgg}', type=str,
default='alexnet')
# -- (ADDED) Add pre-trained flag for depth network
# -- will convert the depth images to 3-channels
parser.add_argument('-pretrained_depth', dest='pretrained_depth', action='store_true')
parser.add_argument('-sigmoid_gate', dest='sigmoid_gate', action='store_true')
parser.add_argument('-yesFuse', dest='yesFuse', action='store_true')
parser.add_argument('-hard_att', dest='hard_att', action='store_true')
parser.add_argument('-sigmoid_uncertainty', dest='sigmoid_uncertainty', action='store_true')
# -- (ADDED) add tensorboard_extra flag which is used to log extra information about depth process in tensorboard
parser.add_argument('-tensorboard_ex', dest='tensorboard_ex', action='store_true')
parser.add_argument('-po', dest='enable_po', action='store_true')
parser.add_argument('-izs_file', dest='izs_file', help='Inverse-Zeroshot split.', type=str, default=None)
parser.add_argument('-izs_vis_discard', dest='izs_vis_discard', action='store_true')
parser.add_argument('-gates', dest='enable_gates', action='store_true')
parser.add_argument('-n_drop', dest='n_drop', action='store_true')
return parser