-
Notifications
You must be signed in to change notification settings - Fork 0
/
paper1_R&R_seasonality.Rmd
304 lines (237 loc) · 10.9 KB
/
paper1_R&R_seasonality.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
---
title: "More robustness test"
author: "Peng"
date: "2023/3/10"
output:
pdf_document: default
html_document: default
---
```{r}
library(readr)
library(did)
library(fixest)
library(DRDID)
library(tidyverse)
library(plm)
library(stargazer)
library(sandwich)
library(lmtest)
library(jtools)
library(clubSandwich)
library(lubridate)
```
```{r}
setwd("~/R")
df2012<-read_csv("~/R/df2012_20210920_datefixed.csv")
```
```{r}
df2012$sale_date_splited<- strsplit(df2012$sale_date, "/")
df2012$sale_date_y<- sapply(df2012$sale_date_splited, function(x) x[[3]])
df2012$sale_date_m<- sapply(df2012$sale_date_splited, function(x) x[[2]])
df2012$sale_date_d<- sapply(df2012$sale_date_splited, function(x) x[[1]])
df2012 <- df2012 %>%
mutate(sale_date_q = case_when(
month %in% 1:3 ~ "Q1",
month %in% 4:6 ~ "Q2",
month %in% 7:9 ~ "Q3",
month %in% 10:12 ~ "Q4"
))
date_new<-df2012$sale_date_splited
date_new<-lapply(date_new, function(x) as.Date(paste(x[3], x[2], x[1], sep = "-"), format = "%Y-%m-%d"))
head(date_new)
df2012$sale_date_new<-date_new
```
```{r}
df2012$timedummy<-fct_relevel(df2012$timedummy,levels="Y2012","Y2013","Y2014","Y2015","Y2016","Y2017","janapr18","t1","t2")
df2012$groups<-fct_relevel(df2012$groups, levels="C","A","B","D")
#set levels of groups dummies so that Group C will be used as base
df2012$groups_D<-fct_relevel(df2012$groups, levels="D","A","B","C")
#set levels of groups_D dummies so that Group C will be used as base
unique(df2012$groups)
# set levels of period dummies so that t0 period will be used as base
df2012$periods<-fct_relevel(df2012$periods, levels="t0","t1","t2")
```
```{r}
df2012$timedummy<-fct_relevel(df2012$timedummy,levels="Y2012","Y2013","Y2014","Y2015","Y2016","Y2017","janapr18","t1","t2")
```
```{r}
df2012<-df2012 %>%
mutate(timedummy2=case_when(year==2012~"Y2012",
year==2013~"Y2013",
year==2014~"Y2014",
year==2015~"Y2015",
year==2016~"Y2016",
year==2017~"Y2017",
janapr18==1~"Y2018janapr",
t1==1~"Yt1",
t2==1~"Yt2"))
df2012<- df2012%>%
mutate(timedummy3=as.factor(yearqrt))
class(df2012$timedummy3)
unique(df2012$timedummy3)
unique(df2012$timedummy2)
df2012<-df2012%>%
mutate(timedummy6= case_when(timedummy3=="2012 Q1"~ "Y2012Q1",
timedummy3=="2012 Q2"~ "Y2012Q2",
timedummy3=="2012 Q3"~ "Y2012Q3",
timedummy3=="2012 Q4"~ "Y2012Q4",
timedummy3=="2013 Q1"~ "Y2013Q1",
timedummy3=="2013 Q2"~ "Y2013Q2",
timedummy3=="2013 Q3"~ "Y2013Q3",
timedummy3=="2013 Q4"~ "Y2013Q4",
timedummy3=="2014 Q1"~ "Y2014Q1",
timedummy3=="2014 Q2"~ "Y2014Q2",
timedummy3=="2014 Q3"~ "Y2014Q3",
timedummy3=="2014 Q4"~ "Y2014Q4",
timedummy3=="2015 Q1"~ "Y2015Q1",
timedummy3=="2015 Q2"~ "Y2015Q2",
timedummy3=="2015 Q3"~ "Y2015Q3",
timedummy3=="2015 Q4"~ "Y2015Q4",
timedummy3=="2016 Q1"~ "Y2016Q1",
timedummy3=="2016 Q2"~ "Y2016Q2",
timedummy3=="2016 Q3"~ "Y2016Q3",
timedummy3=="2016 Q4"~ "Y2016Q4",
timedummy3=="2017 Q1"~ "Y2017Q1",
timedummy3=="2017 Q2"~ "Y2017Q2",
timedummy3=="2017 Q3"~ "Y2017Q3",
timedummy3=="2017 Q4"~ "Y2017Q4",
janapr18==1~"Y2018janapr",
t1==1~"Yt2",
t2==1~"Yt3"
))
unique(df2012$timedummy6)
df2012$timedummy6<-fct_relevel(df2012$timedummy6, levels="Y2012Q1","Y2012Q2","Y2012Q3","Y2012Q4","Y2013Q1","Y2013Q2","Y2013Q3","Y2013Q4","Y2014Q1","Y2014Q2","Y2014Q3","Y2014Q4","Y2015Q1","Y2015Q2","Y2015Q3","Y2015Q4","Y2016Q1","Y2016Q2","Y2016Q3","Y2016Q4","Y2017Q1","Y2017Q2","Y2017Q3","Y2017Q4","Y2018janapr","Yt2","Yt3")
```
```{r}
df2012_mutated <- df2012
df2012_mutated$contour=replace_na(df2012_mutated$contour,"Unreported")
df2012_mutated$deck=replace_na(df2012_mutated$deck,"Unreported")
# df2012_mutated$garages_mainroof=replace_na(df2012_mutated$garages_mainroof,"Unreported")
df2012_mutated$roof_material=replace_na(df2012_mutated$roof_material,"Unreported")
df2012_mutated$wall_material=replace_na(df2012_mutated$wall_material,"Unreported")
df2012_mutated$building_age=replace_na(df2012_mutated$building_age,"Unreported")
df2012_mutated$land_area=replace_na(df2012_mutated$land_area,0.069)
df2012_mutated$floor_area=replace_na(df2012_mutated$floor_area,136)
```
```{r}
garage=df2012_mutated$garages_mainroof
# replace msising values with Unreported
garage[is.na(garage)]<-"Unreported"
df2012_mutated$garages_mainroof<-garage
```
```{r}
bedrooms_min=df2012_mutated$bedrooms_min
# replace msising values with Unreported
bedrooms_min[is.na(bedrooms_min)]<-"Unreported"
#head(bedrooms_min)
df2012_mutated$bedrooms_min<- bedrooms_min
```
#column 1
```{r}
# add control of quarter dummy
col1_q<-feols(lp~t1+t2+A+B+D+t1*A+t2*A+t1*B+t2*B+t1*D+t2*D+as.factor(sale_date_q),data=df2012)
summary(col1_q)
```
```{r}
coefplot(col1_q,keep=c("t1:A","t2:A","t1:B","t2:B","t1:D","t2:D"), ylim=c(-0.4,0.4), axis.text.x = element_text(size=14))
```
```{r}
# add control of month dummy
col1_m<-feols(lp~t1+t2+A+B+D+t1*A+t2*A+t1*B+t2*B+t1*D+t2*D+as.factor(sale_date_m),data=df2012)
summary(col1_m)
```
```{r}
coefplot(col1_m,keep=c("t1:A","t2:A","t1:B","t2:B","t1:D","t2:D"), ylim=c(-0.4,0.4), axis.text.x = element_text(size=14))
```
# Column 2
```{r}
# add quarter dummy
col2_q<-feols(lp~t1+t2+t1*A+t2*A+t1*B+t2*B+t1*D+t2*D+as.factor(sale_date_q)+floor_area+land_area+bedrooms_min+as.factor(building_age)+ as.factor(deck)+ as.factor(wall_material)
+as.factor(roof_material)+as.factor(garages_mainroof)+ as.factor(contour)+as.factor(timedummy2) +as.factor(suburb),data=df2012_mutated)
summary(col2_q)
```
```{r}
coefplot(col2_q,keep=c("t1:A","t2:A","t1:B","t2:B","t1:D","t2:D"), ylim=c(-0.4,0.4), axis.text.x = element_text(size=14))
```
```{r}
#add month dummy
col2_m<-feols(lp~t1+t2+t1*A+t2*A+t1*B+t2*B+t1*D+t2*D+as.factor(sale_date_m)+floor_area+land_area+bedrooms_min+as.factor(building_age)+ as.factor(deck)+ as.factor(wall_material)
+as.factor(roof_material)+as.factor(garages_mainroof)+ as.factor(contour)+as.factor(timedummy2) +as.factor(suburb),data=df2012_mutated)
summary(col2_m)
```
```{r}
coefplot(col2_m,keep=c("t1:A","t2:A","t1:B","t2:B","t1:D","t2:D"), ylim=c(-0.4,0.4), axis.text.x = element_text(size=14))
```
#column 3
```{r}
# control quarter
col3_q<-feols(lp~yr2012+yr2013+yr2014+yr2015+yr2016+yr2017+t1+t2+A+B+D+t1*A+t2*A+t1*B+t2*B+t1*D+t2*D+as.factor(sale_date_q)|houseid+year, data=df2012)
summary(col3_q)
```
```{r}
coefplot(col3_q,keep=c("t1:A","t2:A","t1:B","t2:B","t1:D","t2:D"), ylim=c(-0.4,0.4), axis.text.x = element_text(size=14))
```
```{r}
# control month
col3_m<-feols(lp~yr2012+yr2013+yr2014+yr2015+yr2016+yr2017+t1+t2+A+B+D+t1*A+t2*A+t1*B+t2*B+t1*D+t2*D+as.factor(sale_date_m)|houseid+year, data=df2012)
summary(col3_m)
```
```{r}
coefplot(col3_m,keep=c("t1:A","t2:A","t1:B","t2:B","t1:D","t2:D"), ylim=c(-0.4,0.4), axis.text.x = element_text(size=14))
```
#Column 4
```{r}
#add quarter dummy
```
```{r}
col4_q<-feols(lp~yr2012+yr2013+yr2014+yr2015+yr2016+yr2017+yr2012*A+yr2013*A+yr2014*A+yr2015*A+yr2016*A+yr2017*A+yr2012*B+yr2013*B+yr2014*B+yr2015*B+yr2016*B+yr2017*B+yr2012*D+yr2013*D+yr2014*D+yr2015*D+yr2016*D+yr2017*D+t1+t2+A+B+D+t1*A+t2*A+t1*B+t2*B+t1*D+t2*D+floor_area+land_area+bedrooms_min+as.factor(building_age)+ as.factor(deck)+ as.factor(wall_material)
+as.factor(roof_material)+as.factor(garages_mainroof)+ as.factor(contour)+as.factor(suburb)+as.factor(sale_date_q)|houseid+year,data=df2012_mutated)
summary(col4_q)
```
```{r}
coefplot(col4_q,keep=c("A:t1","A:t2","B:t1","B:t2","D:t1","D:t2"), ylim=c(-0.4,0.4), axis.text.x = element_text(size=14))
```
```{r}
# add month dummy
col4_m<-feols(lp~yr2012+yr2013+yr2014+yr2015+yr2016+yr2017+yr2012*A+yr2013*A+yr2014*A+yr2015*A+yr2016*A+yr2017*A+yr2012*B+yr2013*B+yr2014*B+yr2015*B+yr2016*B+yr2017*B+yr2012*D+yr2013*D+yr2014*D+yr2015*D+yr2016*D+yr2017*D+t1+t2+A+B+D+t1*A+t2*A+t1*B+t2*B+t1*D+t2*D+floor_area+land_area+bedrooms_min+as.factor(building_age)+ as.factor(deck)+ as.factor(wall_material)
+as.factor(roof_material)+as.factor(garages_mainroof)+ as.factor(contour)+as.factor(suburb)+as.factor(sale_date_m)|houseid+year,data=df2012_mutated)
summary(col4_m)
```
```{r}
coefplot(col4_m,keep=c("A:t1","A:t2","B:t1","B:t2","D:t1","D:t2"), ylim=c(-0.4,0.4), axis.text.x = element_text(size=14))
```
```{r}
coefplot(col4_m,ylim=c(-0.4,0.4), keep=c("yr2012:A","yr2013:A","yr2014:A","yr2015:A","yr2016:A","yr2017:A","A:t1", "A:t2"), axis.text.x = element_text(size=14))
```
```{r}
coefplot(col4_m,keep=c("yr2012:B","yr2013:B","yr2014:B","yr2015:B","yr2016:B","yr2017:B", "B:t1","B:t2"), axis.text.x = element_text(size=14))
```
```{r}
coefplot(col4_m, keep=c("yr2012:D","yr2013:D","yr2014:D","yr2015:D","yr2016:D","yr2017:D", "D:t1", "D:t2"), axis.text.x = element_text(size=14))
```
# column 5
```{r}
# add quarter dummy
col5_q<-feols(lp~yr2012+yr2013+yr2014+yr2015+yr2016+yr2017+yr2012*A+yr2013*A+yr2014*A+yr2015*A+yr2016*A+yr2017*A+yr2012*B+yr2013*B+yr2014*B+yr2015*B+yr2016*B+yr2017*B+yr2012*D+yr2013*D+yr2014*D+yr2015*D+yr2016*D+yr2017*D+t1+t2+A+B+D+t1*A+t2*A+t1*B+t2*B+t1*D+t2*D+as.factor(sale_date_q)|houseid+year,data=df2012)
summary(col5_q)
```
```{r}
coefplot(col5_q,keep=c("A:t1","A:t2","B:t1","B:t2","D:t1","D:t2"), ylim=c(-0.4,0.4), axis.text.x = element_text(size=14))
```
```{r}
# add month dummy
col5_m<-feols(lp~yr2012+yr2013+yr2014+yr2015+yr2016+yr2017+yr2012*A+yr2013*A+yr2014*A+yr2015*A+yr2016*A+yr2017*A+yr2012*B+yr2013*B+yr2014*B+yr2015*B+yr2016*B+yr2017*B+yr2012*D+yr2013*D+yr2014*D+yr2015*D+yr2016*D+yr2017*D+t1+t2+A+B+D+t1*A+t2*A+t1*B+t2*B+t1*D+t2*D+as.factor(sale_date_m)|houseid+year,data=df2012)
summary(col5_m)
```
```{r}
coefplot(col5_m,keep=c("A:t1","A:t2","B:t1","B:t2","D:t1","D:t2"), ylim=c(-0.4,0.4), axis.text.x = element_text(size=14))
```
```{r}
coefplot(col5_m,ylim=c(-0.4,0.4), keep=c("yr2012:A","yr2013:A","yr2014:A","yr2015:A","yr2016:A","yr2017:A","A:t1", "A:t2"), axis.text.x = element_text(size=14))
```
```{r}
coefplot(col5_m,keep=c("yr2012:B","yr2013:B","yr2014:B","yr2015:B","yr2016:B","yr2017:B", "B:t1","B:t2"), axis.text.x = element_text(size=14))
```
```{r}
coefplot(col5_m, keep=c("yr2012:D","yr2013:D","yr2014:D","yr2015:D","yr2016:D","yr2017:D", "D:t1", "D:t2"), axis.text.x = element_text(size=14))
```