
CS3A SFML PORTFOLIO
By: Sherman Yan

Department of Computer Science, Pasadena City College
Faculty Advisor: Dave Smith

PROJECT RESULTS

Splash Screen Gallery Display
Scrollable container to
display all developed

projects.

Green Ball
First SFML Project!

Drawing a green ball.

Bouncing Ball
Learning how to make
object bounce inside a

boundary.

Pong
Knock off ping pong game

with SFML!

Top Hat Guy
Creating drawable objects

inheriting sf::Drawable.

Playing Card
Learning Sprites/Textures,

and Text/Fonts.

Poker Analysis
Displaying Calculated
Statistics with SFML.

Ocean Cleanup
Final Game! Collect trash

and clean our ocean.

OVERVIEW

STRUCTURE

CONCLUSION

RESOURCES

The SFML Portfolio is a capstone project
covering all topics learned during the duration of
the course with the utilization of SFML (A
graphics library). The following are topics that
are incorporated in this project:

➔ Object Oriented programming
➔ Inheritance
➔ Polymorphism
➔ Pointers
➔ SFML Graphics

<SFML/Graphics.hpp>
Author: SFML (Simple and Fast Multimedia Library)
Library version: SFML 2.5.1
Availability: https://www.sfml-dev.org/

The following is a diagram of how the
application is structured. Each project inside the
portfolio follows this format.

Displayable Application

Project Application

App Component

App Component

App Component

sf::Drawable

Updatable

EventHandleable

Reflection
This project allowed me to strengthen my
understanding of all the different topics and
tool that were taught during the duration of
the course. As this was my first exposure to
SFML and even creating UI graphics, this
projects was eye-opening and allowed me to
develop a good general understanding of
graphics in games and other user interfaces
as well as the structure of how games work.

Next Steps
➔ Improve the DisplayableApplication class to

make it more versatile.
➔ Fix DisplayableApplication class so that it can

handle different interactions between
different AppComponents to simplify the
need for extra classes.

➔ Learn more advanced topics and tools to
create new more advanced projects to add to
portfolio.

UTILITY CLASSES

DisplayableApplication
Utility class for creating a displayable application in SFML.

Public Member functions:
 DisplayableApplication();

Default constructor.
 DisplayableApplication(const std::string& windowName);

Construct window with window name.
 DisplayableApplication(const std::string& windowName,

const sf::Color &bgColor);
Construct window with name and background color.

 void disableExit();
Disable the Exit button.

 void setWindowSize(const sf::Vector2u& windowSize);
Set the window size.

 void addComponent(AppComponent& component);
Add component to display in window.

 void run(sf::RenderWindow&window);
Run application.

ScrollableContainer<T>
Utility class for creating a scrollable container in SFML.

Public Member functions:
 ScrollableContainer();

Default constructor.
 ScrollableContainer(ScrollEnum scrollDirection,

float spacing);
Construct container with scroll direction and spacing.

 void scroll(float delta, const sf::FloatRect & bound);
Scroll container delta amount between given bound.

 void addComponent(T* item);
Add the reference of component type T* the container.

 void reverseScrollDirection();
Reverse the scrolling direction.

 void setItemSpacing(float spacing);
Set the spacing between each item of the container.

 sf::FloatRect getGlobalBounds() const;
Get the container’s global bounds.

 void setPosition(float x, float y);
Sets the top left position with coordinates x,y.

 void setPosition(sf::Vector2f pos);
Sets the top left coordinate with pos.

 void update();
Update the container item positions.

Example Code:

void scroll(float delta, const sf::FloatRect & bound){
if (!items.empty()) {

sf::FloatRect selfSize = getGlobalBounds();
if (delta + selfSize.top <= bound.top &&

 delta + selfSize.top + selfSize.height >= bound.height)
 items[0]->move(0, delta * direction);
 }
}

void update(){
if (!items.empty())

for (int i = 1;i < items.size(); i++)
Position::right(*items[i], *items[i - 1], spacing);

}

Position
Static utility class for positioning objects.

Public Member functions:
 template<class T, class S>

 static void left(T& self,const S& ref, float spacing =0);
Align the left of self and reference object.

 template<class T, class S>

 static void right(T& self,const S& ref, float spacing =0);
Align the right of self and reference object.

 template<class T, class S>

 static void top(T& self, const S& ref, float spacing =0);
Align the bottom of self and reference object.

 template<class T, class S>

 static void bottom(T& self, const S& ref, float spacing =0);
Align the bottom of self and reference object.

 template<class T, class S>

 static void center(T& self,const S& ref);
Centers self with reference.

States
Utility base class to store object state.

Public Member functions:
 States();

Default constructor.
 bool checkStates(StatesEnum state) const;

Check if state is active.
 void enableState(StatesEnum state);
 Enable state.
 void disableState(StatesEnum state);
 Disable state.
 void setState(StatesEnum state, bool value);
 Set state to value.
 void toggleState(StatesEnum state);

Toggle state.

Textures
Static utility class to get Textures.

Public Member functions:
 static sf::Texture& getTexture(TextureEnums texture);

Returns the sf::Texture based on texture.

AppDriver
Static class to open apps.

Public Member function:
 static void openApp(AppsEnum app,

sf::RenderWindow& window);
Loads in the app in the given window..

Example Code:

 switch (app) {
 case APP_OCEAN_CLEANUP: {

 App_OceanCleanup a;
 a.run(window);
 break;
}

 case APP_POKER_ANALYSIS: {
 App_PokerAnalysis a;
 a.run(window);
 break;
}
case “rest of the apps…”

 }

MouseEvents
Static utility class to check mouse events.

Public Member functions:
 template<class T>

 static bool isHover(const T& Obj , const sf::RenderWindow& window);
Checks if mouse is hovered over Obj.

 template<class T>

 static bool isClick(const T& Obj , const sf::RenderWindow& window);
Checks if Obj is clicked by mouse.

Fonts
Static utility class to get fonts.

Public Member functions:
 static sf::Font& getFont(FontsEnum font);

Returns the sf::Font based on font.

