forked from google-research/augmix
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cifar.py
440 lines (376 loc) · 13.5 KB
/
cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Main script to launch AugMix training on CIFAR-10/100.
Supports WideResNet, AllConv, ResNeXt models on CIFAR-10 and CIFAR-100 as well
as evaluation on CIFAR-10-C and CIFAR-100-C.
Example usage:
`python cifar.py`
"""
from __future__ import print_function
import argparse
import os
import shutil
import time
import augmentations
from models.cifar.allconv import AllConvNet
import numpy as np
from third_party.ResNeXt_DenseNet.models.densenet import densenet
from third_party.ResNeXt_DenseNet.models.resnext import resnext29
from third_party.WideResNet_pytorch.wideresnet import WideResNet
import torch
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
from torchvision import datasets
from torchvision import transforms
parser = argparse.ArgumentParser(
description='Trains a CIFAR Classifier',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
'--dataset',
type=str,
default='cifar10',
choices=['cifar10', 'cifar100'],
help='Choose between CIFAR-10, CIFAR-100.')
parser.add_argument(
'--model',
'-m',
type=str,
default='wrn',
choices=['wrn', 'allconv', 'densenet', 'resnext'],
help='Choose architecture.')
# Optimization options
parser.add_argument(
'--epochs', '-e', type=int, default=100, help='Number of epochs to train.')
parser.add_argument(
'--learning-rate',
'-lr',
type=float,
default=0.1,
help='Initial learning rate.')
parser.add_argument(
'--batch-size', '-b', type=int, default=128, help='Batch size.')
parser.add_argument('--eval-batch-size', type=int, default=1000)
parser.add_argument('--momentum', type=float, default=0.9, help='Momentum.')
parser.add_argument(
'--decay',
'-wd',
type=float,
default=0.0005,
help='Weight decay (L2 penalty).')
# WRN Architecture options
parser.add_argument(
'--layers', default=40, type=int, help='total number of layers')
parser.add_argument('--widen-factor', default=2, type=int, help='Widen factor')
parser.add_argument(
'--droprate', default=0.0, type=float, help='Dropout probability')
# AugMix options
parser.add_argument(
'--mixture-width',
default=3,
type=int,
help='Number of augmentation chains to mix per augmented example')
parser.add_argument(
'--mixture-depth',
default=-1,
type=int,
help='Depth of augmentation chains. -1 denotes stochastic depth in [1, 3]')
parser.add_argument(
'--aug-severity',
default=3,
type=int,
help='Severity of base augmentation operators')
parser.add_argument(
'--no-jsd',
'-nj',
action='store_true',
help='Turn off JSD consistency loss.')
parser.add_argument(
'--all-ops',
'-all',
action='store_true',
help='Turn on all operations (+brightness,contrast,color,sharpness).')
# Checkpointing options
parser.add_argument(
'--save',
'-s',
type=str,
default='./snapshots',
help='Folder to save checkpoints.')
parser.add_argument(
'--resume',
'-r',
type=str,
default='',
help='Checkpoint path for resume / test.')
parser.add_argument('--evaluate', action='store_true', help='Eval only.')
parser.add_argument(
'--print-freq',
type=int,
default=50,
help='Training loss print frequency (batches).')
# Acceleration
parser.add_argument(
'--num-workers',
type=int,
default=4,
help='Number of pre-fetching threads.')
args = parser.parse_args()
CORRUPTIONS = [
'gaussian_noise', 'shot_noise', 'impulse_noise', 'defocus_blur',
'glass_blur', 'motion_blur', 'zoom_blur', 'snow', 'frost', 'fog',
'brightness', 'contrast', 'elastic_transform', 'pixelate',
'jpeg_compression'
]
def get_lr(step, total_steps, lr_max, lr_min):
"""Compute learning rate according to cosine annealing schedule."""
return lr_min + (lr_max - lr_min) * 0.5 * (1 +
np.cos(step / total_steps * np.pi))
def aug(image, preprocess):
"""Perform AugMix augmentations and compute mixture.
Args:
image: PIL.Image input image
preprocess: Preprocessing function which should return a torch tensor.
Returns:
mixed: Augmented and mixed image.
"""
aug_list = augmentations.augmentations
if args.all_ops:
aug_list = augmentations.augmentations_all
ws = np.float32(np.random.dirichlet([1] * args.mixture_width))
m = np.float32(np.random.beta(1, 1))
mix = torch.zeros_like(preprocess(image))
for i in range(args.mixture_width):
image_aug = image.copy()
depth = args.mixture_depth if args.mixture_depth > 0 else np.random.randint(
1, 4)
for _ in range(depth):
op = np.random.choice(aug_list)
image_aug = op(image_aug, args.aug_severity)
# Preprocessing commutes since all coefficients are convex
mix += ws[i] * preprocess(image_aug)
mixed = (1 - m) * preprocess(image) + m * mix
return mixed
class AugMixDataset(torch.utils.data.Dataset):
"""Dataset wrapper to perform AugMix augmentation."""
def __init__(self, dataset, preprocess, no_jsd=False):
self.dataset = dataset
self.preprocess = preprocess
self.no_jsd = no_jsd
def __getitem__(self, i):
x, y = self.dataset[i]
if self.no_jsd:
return aug(x, self.preprocess), y
else:
im_tuple = (self.preprocess(x), aug(x, self.preprocess),
aug(x, self.preprocess))
return im_tuple, y
def __len__(self):
return len(self.dataset)
def train(net, train_loader, optimizer, scheduler):
"""Train for one epoch."""
net.train()
loss_ema = 0.
for i, (images, targets) in enumerate(train_loader):
optimizer.zero_grad()
if args.no_jsd:
images = images.cuda()
targets = targets.cuda()
logits = net(images)
loss = F.cross_entropy(logits, targets)
else:
images_all = torch.cat(images, 0).cuda()
targets = targets.cuda()
logits_all = net(images_all)
logits_clean, logits_aug1, logits_aug2 = torch.split(
logits_all, images[0].size(0))
# Cross-entropy is only computed on clean images
loss = F.cross_entropy(logits_clean, targets)
p_clean, p_aug1, p_aug2 = F.softmax(
logits_clean, dim=1), F.softmax(
logits_aug1, dim=1), F.softmax(
logits_aug2, dim=1)
# Clamp mixture distribution to avoid exploding KL divergence
p_mixture = torch.clamp((p_clean + p_aug1 + p_aug2) / 3., 1e-7, 1).log()
loss += 12 * (F.kl_div(p_mixture, p_clean, reduction='batchmean') +
F.kl_div(p_mixture, p_aug1, reduction='batchmean') +
F.kl_div(p_mixture, p_aug2, reduction='batchmean')) / 3.
loss.backward()
optimizer.step()
scheduler.step()
loss_ema = loss_ema * 0.9 + float(loss) * 0.1
if i % args.print_freq == 0:
print('Train Loss {:.3f}'.format(loss_ema))
return loss_ema
def test(net, test_loader):
"""Evaluate network on given dataset."""
net.eval()
total_loss = 0.
total_correct = 0
with torch.no_grad():
for images, targets in test_loader:
images, targets = images.cuda(), targets.cuda()
logits = net(images)
loss = F.cross_entropy(logits, targets)
pred = logits.data.max(1)[1]
total_loss += float(loss.data)
total_correct += pred.eq(targets.data).sum().item()
return total_loss / len(test_loader.dataset), total_correct / len(
test_loader.dataset)
def test_c(net, test_data, base_path):
"""Evaluate network on given corrupted dataset."""
corruption_accs = []
for corruption in CORRUPTIONS:
# Reference to original data is mutated
test_data.data = np.load(base_path + corruption + '.npy')
test_data.targets = torch.LongTensor(np.load(base_path + 'labels.npy'))
test_loader = torch.utils.data.DataLoader(
test_data,
batch_size=args.eval_batch_size,
shuffle=False,
num_workers=args.num_workers,
pin_memory=True)
test_loss, test_acc = test(net, test_loader)
corruption_accs.append(test_acc)
print('{}\n\tTest Loss {:.3f} | Test Error {:.3f}'.format(
corruption, test_loss, 100 - 100. * test_acc))
return np.mean(corruption_accs)
def main():
torch.manual_seed(1)
np.random.seed(1)
# Load datasets
train_transform = transforms.Compose(
[transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, padding=4)])
preprocess = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize([0.5] * 3, [0.5] * 3)])
test_transform = preprocess
if args.dataset == 'cifar10':
train_data = datasets.CIFAR10(
'./data/cifar', train=True, transform=train_transform, download=True)
test_data = datasets.CIFAR10(
'./data/cifar', train=False, transform=test_transform, download=True)
base_c_path = './data/cifar/CIFAR-10-C/'
num_classes = 10
else:
train_data = datasets.CIFAR100(
'./data/cifar', train=True, transform=train_transform, download=True)
test_data = datasets.CIFAR100(
'./data/cifar', train=False, transform=test_transform, download=True)
base_c_path = './data/cifar/CIFAR-100-C/'
num_classes = 100
train_data = AugMixDataset(train_data, preprocess, args.no_jsd)
train_loader = torch.utils.data.DataLoader(
train_data,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory=True)
test_loader = torch.utils.data.DataLoader(
test_data,
batch_size=args.eval_batch_size,
shuffle=False,
num_workers=args.num_workers,
pin_memory=True)
# Create model
if args.model == 'densenet':
net = densenet(num_classes=num_classes)
elif args.model == 'wrn':
net = WideResNet(args.layers, num_classes, args.widen_factor, args.droprate)
elif args.model == 'allconv':
net = AllConvNet(num_classes)
elif args.model == 'resnext':
net = resnext29(num_classes=num_classes)
optimizer = torch.optim.SGD(
net.parameters(),
args.learning_rate,
momentum=args.momentum,
weight_decay=args.decay,
nesterov=True)
# Distribute model across all visible GPUs
net = torch.nn.DataParallel(net).cuda()
cudnn.benchmark = True
start_epoch = 0
if args.resume:
if os.path.isfile(args.resume):
checkpoint = torch.load(args.resume)
start_epoch = checkpoint['epoch'] + 1
best_acc = checkpoint['best_acc']
net.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print('Model restored from epoch:', start_epoch)
if args.evaluate:
# Evaluate clean accuracy first because test_c mutates underlying data
test_loss, test_acc = test(net, test_loader)
print('Clean\n\tTest Loss {:.3f} | Test Error {:.2f}'.format(
test_loss, 100 - 100. * test_acc))
test_c_acc = test_c(net, test_data, base_c_path)
print('Mean Corruption Error: {:.3f}'.format(100 - 100. * test_c_acc))
return
scheduler = torch.optim.lr_scheduler.LambdaLR(
optimizer,
lr_lambda=lambda step: get_lr( # pylint: disable=g-long-lambda
step,
args.epochs * len(train_loader),
1, # lr_lambda computes multiplicative factor
1e-6 / args.learning_rate))
if not os.path.exists(args.save):
os.makedirs(args.save)
if not os.path.isdir(args.save):
raise Exception('%s is not a dir' % args.save)
log_path = os.path.join(args.save,
args.dataset + '_' + args.model + '_training_log.csv')
with open(log_path, 'w') as f:
f.write('epoch,time(s),train_loss,test_loss,test_error(%)\n')
best_acc = 0
print('Beginning training from epoch:', start_epoch + 1)
for epoch in range(start_epoch, args.epochs):
begin_time = time.time()
train_loss_ema = train(net, train_loader, optimizer, scheduler)
test_loss, test_acc = test(net, test_loader)
is_best = test_acc > best_acc
best_acc = max(test_acc, best_acc)
checkpoint = {
'epoch': epoch,
'dataset': args.dataset,
'model': args.model,
'state_dict': net.state_dict(),
'best_acc': best_acc,
'optimizer': optimizer.state_dict(),
}
save_path = os.path.join(args.save, 'checkpoint.pth.tar')
torch.save(checkpoint, save_path)
if is_best:
shutil.copyfile(save_path, os.path.join(args.save, 'model_best.pth.tar'))
with open(log_path, 'a') as f:
f.write('%03d,%05d,%0.6f,%0.5f,%0.2f\n' % (
(epoch + 1),
time.time() - begin_time,
train_loss_ema,
test_loss,
100 - 100. * test_acc,
))
print(
'Epoch {0:3d} | Time {1:5d} | Train Loss {2:.4f} | Test Loss {3:.3f} |'
' Test Error {4:.2f}'
.format((epoch + 1), int(time.time() - begin_time), train_loss_ema,
test_loss, 100 - 100. * test_acc))
test_c_acc = test_c(net, test_data, base_c_path)
print('Mean Corruption Error: {:.3f}'.format(100 - 100. * test_c_acc))
with open(log_path, 'a') as f:
f.write('%03d,%05d,%0.6f,%0.5f,%0.2f\n' %
(args.epochs + 1, 0, 0, 0, 100 - 100 * test_c_acc))
if __name__ == '__main__':
main()