forked from AayushBangroo/MaskDetector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcamera.py
129 lines (109 loc) · 5 KB
/
camera.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import cv2
import tensorflow as tf
from keras.applications.mobilenet_v2 import preprocess_input
from keras.preprocessing.image import img_to_array
from keras.models import load_model
from imutils.video import VideoStream
import numpy as np
import argparse
import imutils
import time
import cv2
import os
import numpy as np
facec = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
#model = FacialExpressionModel("model.json", "model_weights.h5")
font = cv2.FONT_HERSHEY_SIMPLEX
class VideoCamera(object):
def __init__(self):
#self.video = cv2.VideoCapture(0)
# load our serialized face detector model from disk
self.prototxtPath = 'face_detector/deploy.prototxt'
self.weightsPath = "face_detector/res10_300x300_ssd_iter_140000.caffemodel"
self.faceNet = cv2.dnn.readNet(self.prototxtPath, self.weightsPath)
# load the face mask detector model from disk
self.maskNet = tf.keras.models.load_model("model.h5")
# initialize the video stream and allow the camera sensor to warm up
self.vs = VideoStream(src=0).start()
time.sleep(2.0)
def __del__(self):
#self.video.release()
self.vs.stop()
def detect_and_predict_mask(self):
# grab the dimensions of the frame and then construct a blob
# from it
frame=self.vs.read()
(h, w) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(frame, 1.0, (300, 300),
(104.0, 177.0, 123.0))
# pass the blob through the network and obtain the face detections
self.faceNet.setInput(blob)
detections = self.faceNet.forward()
# initialize our list of faces, their corresponding locations,
# and the list of predictions from our face mask network
faces = []
locs = []
preds = []
# loop over the detections
for i in range(0, detections.shape[2]):
# extract the confidence (i.e., probability) associated with
# the detection
confidence = detections[0, 0, i, 2]
# filter out weak detections by ensuring the confidence is
# greater than the minimum confidence
if confidence > 0.5:
# compute the (x, y)-coordinates of the bounding box for
# the object
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# ensure the bounding boxes fall within the dimensions of
# the frame
(startX, startY) = (max(0, startX), max(0, startY))
(endX, endY) = (min(w - 1, endX), min(h - 1, endY))
# extract the face ROI, convert it from BGR to RGB channel
# ordering, resize it to 224x224, and preprocess it
face = frame[startY:endY, startX:endX]
face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
face = cv2.resize(face, (224, 224))
face = img_to_array(face)
face = preprocess_input(face)
face = np.expand_dims(face, axis=0)
# add the face and bounding boxes to their respective
# lists
faces.append(face)
locs.append((startX, startY, endX, endY))
# only make a predictions if at least one face was detected
if len(faces) > 0:
# for faster inference we'll make batch predictions on *all*
# faces at the same time rather than one-by-one predictions
# in the above `for` loop
preds = self.maskNet.predict(faces)
# return a 2-tuple of the face locations and their corresponding
# locations
return (locs, preds)
# returns camera frames along with bounding boxes and predictions
def get_frame(self):
frame = self.vs.read()
# detect faces in the frame and determine if they are wearing a
# face mask or not
(locs, preds) = self.detect_and_predict_mask()
# loop over the detected face locations and their corresponding
# locations
for (box, pred) in zip(locs, preds):
# unpack the bounding box and predictions
(startX, startY, endX, endY) = box
(mask, withoutMask) = pred
# determine the class label and color we'll use to draw
# the bounding box and text
label = "Mask" if mask > withoutMask else "No Mask"
color = (0, 255, 0) if label == "Mask" else (0, 0, 255)
# include the probability in the label
label = "{}: {:.2f}%".format(label, max(mask, withoutMask) * 100)
# display the label and bounding box rectangle on the output
# frame
cv2.putText(frame, label, (startX, startY - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2)
cv2.rectangle(frame, (startX, startY), (endX, endY), color, 2)
# show the output frame
_, jpeg = cv2.imencode('.jpg', frame)
return jpeg.tobytes()