-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmeasure.py
42 lines (29 loc) · 920 Bytes
/
measure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import numpy as np
import glob
from PIL import Image
from skimage.metrics import structural_similarity as ssim
from skimage.metrics import peak_signal_noise_ratio as psnr
im_dir = '/root/autodl-tmp/underwater/code/TransWeather-main/results/LUSI/*.png'
# im_dir = r'C:/Users/LENOVO/Desktop/funiegan/*.jpg'
label_dir = '/root/autodl-tmp/underwater/data/LUSI2/test/gt/'
# label_dir = r'C:/Users/LENOVO/Desktop/gt/'
p = 0
s = 0
k = 0
for item in sorted(glob.glob(im_dir)):
k += 1
name = item.split('/')[-1]
print(name)
im1 = Image.open(item).convert('RGB')
im2 = Image.open(label_dir + name[:-4]+'.jpg').convert('RGB')
(h, w) = im2.size
im1 = im1.resize((h, w))
im1 = np.array(im1)
im2 = np.array(im2)
psnr_score = psnr(im1, im2)
ssim_score = ssim(im1, im2, multichannel=True)
print(item, ssim_score)
p += psnr_score
s += ssim_score
print(p/k)
print(s/k)