-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_v_pp6.py
381 lines (311 loc) · 15.5 KB
/
train_v_pp6.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import time
import torch
import argparse
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader
from torchvision.utils import save_image
from train_data_functions import TrainData_map
from val_data_functions import ValData_map
# from utils import to_psnr, print_log, validation, adjust_learning_rate
from torchvision.models import vgg16
import sys
from utility.metrics_calculation import calculate_UIQM, calculate_metrics_ssim_psnr_all
import torchvision
from perceptual import LossNetwork
import os
import numpy as np
import random
import pytorch_ssim
# from mymodel import UNet
from models.my_CMDSR_v33 import CMDSR
# from transweather_model_v0 import Transweather
plt.switch_backend('agg')
# --- Parse hyper-parameters --- #
parser = argparse.ArgumentParser(description='Hyper-parameters for network')
parser.add_argument('-learning_rate', help='Set the learning rate', default=1e-4, type=float)
parser.add_argument('-learning_rate2', help='Set the learning rate', default=1e-6, type=float)
parser.add_argument('-learning_rate3', help='Set the learning rate', default=1e-6, type=float)
parser.add_argument('-crop_size', help='Set the crop_size', default=[256, 256], nargs='+', type=int)
parser.add_argument('-train_batch_size', help='Set the training batch size', default=1, type=int)
parser.add_argument('-epoch_start', help='Starting epoch number of the training', default=0, type=int)
parser.add_argument('-lambda_loss', help='Set the lambda in loss function', default=0.04, type=float)
parser.add_argument('-val_batch_size', help='Set the validation/test batch size', default=1, type=int)
parser.add_argument('-exp_name', help='directory for saving the networks of the experiment', type=str)
parser.add_argument('-seed', help='set random seed', default=19, type=int)
parser.add_argument('-num_epochs', help='number of epochs', default=200, type=int)
parser.add_argument('-category', help='output image path', default='v33_8811', type=str)
parser.add_argument('-weight_out', help='output weight path', default='v33_8811', type=str)
parser.add_argument('-train_data_dir', help='train image path', default='/root/autodl-tmp/underwater/data/LUSI2/train/',
type=str)
parser.add_argument('-val_data_dir', help='test image path', default='/root/autodl-tmp/underwater/data/LUSI2/test/',
type=str)
parser.add_argument('-labeled_name', help='The following file should be placed inside the directory "./data/train/',
default='input.txt', type=str)
parser.add_argument('-val_filename1',
help='### The following files should be placed inside the directory "./data/test/"',
default='input.txt', type=str)
parser.add_argument('--scale_factor', type=int, default=4)
# sr_net
parser.add_argument('--input_channels', type=int, default=3, help='the number of input channels for sr net')
parser.add_argument('--channels', type=int, default=64, help='the number of hidden channels for sr net')
parser.add_argument('--residual_lr', type=float, default=1.0, help='the lr coefficient of residual connection')
parser.add_argument('--kernel_size', type=int, default=3, help='the kernel_size of conv')
parser.add_argument('--n_block', type=int, default=9, help='the number of res-block')
parser.add_argument('--n_block1', type=int, default=9, help='the number of res-block')
parser.add_argument('--n_block2', type=int, default=4, help='the number of res-block')
parser.add_argument('--n_conv_each_block', type=int, default=2, help='the number of conv for each res-block')
# condition_net
parser.add_argument('--conv_index', type=str, default='22', help='VGG 22|54')
parser.add_argument('--group', type=int, default=64, help='the number of group conv')
parser.add_argument('--task_size', type=int, default=1)
parser.add_argument('--support_size', type=int, default=1)
parser.add_argument('--use_pretrained_sr_net', type=bool, default=False)
parser.add_argument('--lr_gamma', type=float, default=0.1)
parser.add_argument('--milestones', nargs='+', type=int, default=[5000000, 9000000])
parser.add_argument('--lr_gamma_condition', type=float, default=0.1)
args = parser.parse_args()
learning_rate = args.learning_rate
learning_rate2 = args.learning_rate2
learning_rate3 = args.learning_rate3
crop_size = args.crop_size
train_batch_size = args.train_batch_size
epoch_start = args.epoch_start
lambda_loss = args.lambda_loss
val_batch_size = args.val_batch_size
exp_name = args.exp_name
num_epochs = args.num_epochs
category = args.category
weight_out = args.weight_out
train_data_dir = args.train_data_dir
val_data_dir = args.val_data_dir
labeled_name = args.labeled_name
val_filename1 = args.val_filename1
# set seed
seed = args.seed
if seed is not None:
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
random.seed(seed)
print('Seed:\t{}'.format(seed))
print('--- Hyper-parameters for training ---')
print(
'learning_rate: {}\ncrop_size: {}\ntrain_batch_size: {}\nval_batch_size: {}\nlambda_loss: {}\nweight_out:{}'.format(learning_rate,
crop_size,
train_batch_size,
val_batch_size,
lambda_loss,
weight_out))
# --- Gpu device --- #
device_ids = [Id for Id in range(torch.cuda.device_count())]
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# --- Define the network --- #
net = CMDSR(args)
# --- Build optimizer --- #
optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate)
train_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.milestones,
gamma=args.lr_gamma)
conditionnet_mix_optimizer1 = torch.optim.Adam(net.condition_net1.parameters(), lr=learning_rate2)
# conditionnet_mix_scheduler = torch.optim.lr_scheduler.MultiStepLR(conditionnet_mix_optimizer)
conditionnet_mix_scheduler1 = torch.optim.lr_scheduler.MultiStepLR(conditionnet_mix_optimizer1,
milestones=args.milestones,
gamma=args.lr_gamma_condition)
conditionnet_mix_optimizer2 = torch.optim.Adam(net.condition_net2.parameters(), lr=learning_rate3)
# conditionnet_mix_scheduler = torch.optim.lr_scheduler.MultiStepLR(conditionnet_mix_optimizer)
conditionnet_mix_scheduler2 = torch.optim.lr_scheduler.MultiStepLR(conditionnet_mix_optimizer2,
milestones=args.milestones,
gamma=args.lr_gamma_condition)
# --- Multi-GPU --- #
net = net.to(device)
# net = nn.DataParallel(net, device_ids=device_ids)
# --- Define the perceptual loss network --- #
vgg_model = vgg16(pretrained=True).features[:16]
vgg_model = vgg_model.to(device)
for param in vgg_model.parameters():
param.requires_grad = False
# --- Load the network weight --- #
if os.path.exists('./{}/'.format(exp_name)) == False:
os.mkdir('./{}/'.format(exp_name))
try:
net.load_state_dict(torch.load('/root/autodl-tmp/underwater/code/hyper_net/weight/v33_2/epoch_10.pth'))
print('--- weight loaded ---')
except:
print('--- no weight loaded ---')
# pytorch_total_params = sum(p.numel() for p in net.parameters() if p.requires_grad)
# print("Total_params: {}".format(pytorch_total_params))
loss_network = LossNetwork(vgg_model)
loss_network.eval()
# 均方误差
MSEloss = nn.MSELoss(size_average=False)
MSEloss.to(device)
loss_reconstruct = torch.nn.MSELoss().cuda()
# ssim loss
loss_ssim = pytorch_ssim.SSIM().to(device)
lambda_reconstruct = 0.1
lambda_perceptual = 0.04
lambda_ssim = 0.02
lambda_sa = 0.0000001
# --- Load training data and validation/test data--- #
lbl_train_data_loader = DataLoader(TrainData_map(crop_size, train_data_dir, labeled_name),
batch_size=train_batch_size,
shuffle=True, num_workers=8)
val_data_loader = DataLoader(ValData_map(val_data_dir, val_filename1), batch_size=val_batch_size, shuffle=False,
num_workers=8)
max_PSNR = 0
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
learning_rate = args.learning_rate * (0.1 ** (epoch // 30))
for param_group in optimizer.param_groups:
param_group['lr'] = learning_rate
if os.path.exists('./weight/{}/'.format(weight_out)) == False:
os.makedirs('./weight/{}/'.format(weight_out))
def checkpoint(epoch):
model_out_path = "weight/" + weight_out + "/epoch_{}.pth".format(epoch)
torch.save(net.state_dict(), model_out_path)
print("Checkpoint saved to {}".format(model_out_path))
def eval(val_data_loader, test_model):
if os.path.exists('./results/{}/'.format(category)) == False:
os.makedirs('./results/{}/'.format(category))
output_images_path = './results/{}/'.format(category)
test_model.eval()
for batch_id, train_data in enumerate(val_data_loader):
with torch.no_grad():
input_image, map, gt, imgid = train_data
input_image = input_image.cuda()
map = map.cuda()
gt = gt.cuda()
# net.cuda()
# print(input_image.device)
im_out = net(input_image, map)
save_image(im_out, './results/{}/{}.png'.format(category, imgid[0][:-4]), normalize=True)
# my_save_image(imgid, im_out, './results/{}/'.format(category))
SSIM_BGR, PSNR_BGR, MSE = calculate_metrics_ssim_psnr_all(output_images_path, val_data_dir + 'gt/')
return SSIM_BGR, PSNR_BGR, MSE
def transform_rgb(input_image, map):
ret = input_image.repeat(3, 1, 1, 1)
for i in range(ret.shape[0]):
random_b, random_g, random_r = torch.rand(3) * 0.3 + 0.3
img_b = torch.ones(1, 3, 256, 256).to(device)
img_b[:, 0, :, :] = img_b[:, 0, :, :] * random_b # 降低偏绿
img_b[:, 1, :, :] = img_b[:, 1, :, :] * random_g # 降低偏蓝 #提高偏绿 b和g一起降低 变蓝
img_b[:, 2, :, :] = img_b[:, 2, :, :] * random_r # 降低偏绿
ret[i, :, :, :] = map * input_image + (1 - map) * img_b
# ret = torch.clamp(ret, 0, 255)
return ret
def transform_map(input_image, map):
ret = input_image.repeat(3, 1, 1, 1)
for i in range(ret.shape[0]):
# random_t= torch.rand(256) * 0.6 + 0.5
random_t = torch.rand(1) * 0.6 + 0.5
map = map * random_t.to(device) # 降低偏绿
random_b, random_g, random_r = torch.rand(3) * 0.3 + 0.3
img_b = torch.ones(1, 3, 256, 256).to(device)
img_b[:, 0, :, :] = img_b[:, 0, :, :] * random_b # 降低偏绿
img_b[:, 1, :, :] = img_b[:, 1, :, :] * random_g # 降低偏蓝 #提高偏绿 b和g一起降低 变蓝
img_b[:, 2, :, :] = img_b[:, 2, :, :] * random_r # 降低偏绿
ret[i, :, :, :] = map * input_image + (1 - map) * img_b
# ret = torch.clamp(ret, 0, 255)
return ret
condition_frequence = 10
condition_frequence2 = 11
# val=False
net.train()
for epoch in range(epoch_start, num_epochs):
start_time = time.time()
adjust_learning_rate(optimizer, epoch)
for batch_id, train_data in enumerate(lbl_train_data_loader):
input_image, map, gt, imgid = train_data
input_image = input_image.to(device)
gt = gt.to(device)
map = map.to(device)
# start main network training
optimizer.zero_grad()
net.sr_net.train()
net.sr_net.requires_grad_(True)
pred_image = net(input_image, map)
smooth_loss = F.smooth_l1_loss(pred_image, gt)
perceptual_loss = loss_network(pred_image, gt)
ssim_loss = - loss_ssim(pred_image, gt)
loss = smooth_loss + lambda_loss * perceptual_loss + lambda_ssim * ssim_loss
loss.backward()
optimizer.step()
# start condition net training
if batch_id % condition_frequence == 0:
conditionnet_mix_optimizer1.zero_grad()
net.sr_net.eval()
# net.reconstruct.eval()
net.sr_net.requires_grad_(False)
input = transform_rgb(input_image, map)
pred_image = net(input , map)
gt = gt.repeat(3, 1, 1, 1)
# 算condition net的loss
smooth_loss = F.smooth_l1_loss(pred_image, gt)
perceptual_loss = loss_network(pred_image, gt)
ssim_loss = - loss_ssim(pred_image, gt)
# reconstruct_loss = loss_reconstruct(pred_image, gt)
condition_loss = smooth_loss + lambda_loss * perceptual_loss + lambda_ssim * ssim_loss
# condition_loss = loss * lambda_reconstruct
condition_loss.backward()
conditionnet_mix_optimizer1.step()
conditionnet_mix_scheduler1.step()
if batch_id % condition_frequence2 == 0:
conditionnet_mix_optimizer2.zero_grad()
net.sr_net.eval()
# net.reconstruct.eval()
net.sr_net.requires_grad_(False)
input = transform_map(input_image, map)
pred_image = net(input, map)
if gt.shape[0]!=3:
gt = gt.repeat(3, 1, 1, 1)
# 算condition net的loss
smooth_loss = F.smooth_l1_loss(pred_image, gt)
perceptual_loss = loss_network(pred_image, gt)
ssim_loss = - loss_ssim(pred_image, gt)
# reconstruct_loss = loss_reconstruct(pred_image, gt)
condition_loss = smooth_loss + lambda_loss * perceptual_loss + lambda_ssim * ssim_loss
# condition_loss = loss * lambda_reconstruct
condition_loss.backward()
conditionnet_mix_optimizer2.step()
conditionnet_mix_scheduler2.step()
# torch.cuda.empty_cache()
if not (batch_id % 10):
sys.stdout.write(
"\r[Epoch %d/%d] , [batch %d],[smooth_loss: %f],[perceptual_loss: %f],[ssim_loss : %f],[total_loss :%f]"
% (
epoch,
num_epochs,
batch_id,
smooth_loss,
perceptual_loss * lambda_loss,
ssim_loss * lambda_ssim,
loss
)
)
# print('Epoch: {0}, Iteration: {1}'.format(epoch, batch_id))
# --- Save the network parameters --- #
torch.save(net.state_dict(), './{}/latest'.format(exp_name))
net.eval()
one_epoch_time = time.time() - start_time
# if epoch % 10 == 0:
# checkpoint(epoch)
# print(
# 'Epoch:['+str(epoch + 1)+'/'+str(num_epochs)+'] one_epoch_time: '+ str(one_epoch_time)+'loss: '+str(loss))
if epoch % 10 == 0:
SSIM_BGR, PSNR_BGR, MSE = eval(val_data_loader, net)
sys.stdout.write(
"\r[Epoch %d/%d] , [SSIM %f] , [PSNR: %f] , [MSE: %f] , [ one_epoch_time: %f]"
% (
epoch,
num_epochs,
float(SSIM_BGR),
float(PSNR_BGR),
float(MSE),
float(one_epoch_time)
)
)
if float(PSNR_BGR) > max_PSNR:
checkpoint(epoch)
max_PSNR = float(PSNR_BGR)
print()