-
Notifications
You must be signed in to change notification settings - Fork 2
/
readsac.m
829 lines (789 loc) · 31.6 KB
/
readsac.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
function [t1, t2, d] = readsac(filenames)
% S = READSAC(FILENAMES); reads the given SAC data files. FILENAMES
% contains the names of SAC data files to be read. It may consist of a
% string for a single file or a cell array of strings for multiple file
% names. Wildcard '*' is accepted. If FILENAMES is omitted, all SAC data
% files in the current directory are read. The data sets and header
% variables of the SAC data files are returned in structure S.
%
% [INDEP, DEP] = READSAC(FILENAMES); reads the SAC data files and returns
% the independent and dependent variables in INDEP and DEP. INDEP and DEP
% are either cell arrays if more than one file is specified and data
% lengths are different for different files, or vectors (matrices) if only
% one file is specified or if data have the same length for multiple input
% files. If SAC files are time-series files, the independent variable
% (time) is relative to the reference time of the first file for all files
% if there is no event origin time in the header, or is relative to the
% event origin time of each file if it exists.
%
% [INDEP, DEP1, DEP2] = READSAC(FILENAMES); reads spectral-type SAC data
% files and [INDEP1, INDEP2, DEP] = READSAC(FILENAMES); reads xyz-type
% (spectrogram) SAC data files.
%
% *** As of this version, SAC does not define general xyz-type files. ***
%
% Structure S is defined to have following fields that correspond to SAC
% header variables and the data set except the first field. Fields that are
% set to undefined in the SAC data files are set to NaN or '', depending on
% the type of the variable, in the S structure.
%
% FILENAME - File name of SAC data file; Path to the file, if exists,
% is removed.
% DELTA - Data sampling interval
% DEPMIN - Minimum value of dependent variable
% DEPMAX - Maximum value of dependent variable
% SCALE - Multiplying factor for dependent variable
% ODELTA - Observed increment if different from nominal
% B - Beginning value of independent variable
% E - Ending value of independent variable
% O - Event origin time
% A - First arrival time
% INTERNAL1 - First internal variable
% T0 - First user-defined time picks or markers
% T1 - Second user-defined time picks or markers
% T2 - Third user-defined time picks or markers
% T3 - Fourth user-defined time picks or markers
% T4 - Fifth user-defined time picks or markers
% T5 - Sixth user-defined time picks or markers
% T6 - Seventh user-defined time picks or markers
% T7 - Eighth user-defined time picks or markers
% T8 - Ninth user-defined time picks or markers
% T9 - Tenth user-defined time picks or markers
% F - Final or end of event time
% RESP0 - First instrument response parameter
% RESP1 - Second instrument response parameter
% RESP2 - Third instrument response parameter
% RESP3 - Fourth instrument response parameter
% RESP4 - Fifth instrument response parameter
% RESP5 - Sixth instrument response parameter
% RESP6 - Seventh instrument response parameter
% RESP7 - Eighth instrument response parameter
% RESP8 - Ninth instrument response parameter
% RESP9 - Tenth instrument response parameter
% STLA - Station latitude
% STLO - Station longitude
% STEL - Station elevation
% STDP - Station depth
% EVLA - Event latitude
% EVLO - Event longitude
% EVEL - Event elevation
% EVDP - Event depth
% MAG - Event magnitude
% USER0 - First user-defined variable
% USER1 - Second user-defined variable
% USER2 - Third user-defined variable
% USER3 - Fourth user-defined variable
% USER4 - Fifth user-defined variable
% USER5 - Sixth user-defined variable
% USER6 - Seventh user-defined variable
% USER7 - Eighth user-defined variable
% USER8 - Ninth user-defined variable
% USER9 - Tenth user-defined variable
% DIST - Station-to-event distance (km)
% AZ - Event-to-station azimuth (degree)
% BAZ - Station-to-event azimuth (degree)
% GCARC - Station-to-event great-circle arc length (degree)
% INTERNAL2 - Second internal variable
% INTERNAL3 - Third internal variable
% DEPMEN - Mean value of dependent variable
% CMPAZ - Component azimuth
% CMPINC - Component incident angle
% XMINIMUM - Minimum value of X (spectral file only)
% XMAXIMUM - Maximum value of X (spectral file only)
% YMINIMUM - Minimum value of Y (spectral file only)
% YMAXIMUM - Maximum value of Y (spectral file only)
% UNUSED1 - First unused variable
% UNUSED2 - Second unused variable
% UNUSED3 - Third unused variable
% UNUSED4 - Fourth unused variable
% UNUSED5 - Fifth unused variable
% UNUSED6 - Sixth unused variable
% UNUSED7 - Seventh unused variable
% NZYEAR - GMT year corresponding to reference time
% NZJDAY - GMT julian day corresponding to reference time
% NZHOUR - GMT hour corresponding to reference time
% NZMIN - GMT minute corresponding to reference time
% NZSEC - GMT second corresponding to reference time
% NZMSEC - GMT milisecond corresponding to reference time
% NVHDR - Header version
% NORID - Origin ID
% NEVID - Event ID
% NPTS - Number of data points
% INTERNAL4 - Fourth internal variable
% NWFID - Waveform ID
% NXSIZE - Spectral length (spectral file only)
% NYSIZE - Spectral width (spectral file only)
% UNUSED8 - Eighth unused variable
% IFTYPE - Type of file
% IDEP - Type of dependent variable
% IZTYPE - Reference-time equivalence
% UNUSED9 - Ninth unused variable
% IINST - Type of recording instrument
% ISTREG - Station geographic region
% IEVREG - Event geographic region
% IEVTYP - Type of event
% IQUAL - Quality of data
% ISYNTH - Synthetic data flag
% IMAGTYP - Magnitude type
% IMAGSRC - Magnitude source
% UNUSED10 - Tenth unused variable
% UNUSED11 - Eleventh unused variable
% UNUSED12 - Twelveth unused variable
% UNUSED13 - Thirteenth unused variable
% UNUSED14 - Fourteenth unused variable
% UNUSED15 - Fifteenth unused variable
% UNUSED16 - Sixteenth unused variable
% UNUSED17 - Seventeenth unused variable
% LEVEN - True if data is evenly spaced
% LPSPOL - True if station polarity follows left-hand rule
% LOVROK - True if it is ok to overwrite this file on disk
% LCALDA - True if DIST, AZ, BAZ and GCARC are to be calculated from
% station and event coordinates
% UNUSED18 - Eighteenth unused variable
% KSTNM - Station name
% KEVNM - Event name
% KHOLE - Hole ID for nuclear test
% KO - Event origin time ID
% KA - First arrival time ID
% KT0 - First user-defined time pick ID
% KT1 - Second user-defined time pick ID
% KT2 - Third user-defined time pick ID
% KT3 - Fourth user-defined time pick ID
% KT4 - Fifth user-defined time pick ID
% KT5 - Sixth user-defined time pick ID
% KT6 - Seventh user-defined time pick ID
% KT7 - Eighth user-defined time pick ID
% KT8 - Ninth user-defined time pick ID
% KT9 - Tenth user-defined time pick ID
% KF - Final or end event time ID
% KUSER0 - First user-defined text string
% KUSER1 - Second user-defined text string
% KUSER2 - Third user-defined text string
% KCMPNM - Component name
% KNETWK - Network name
% KDATRD - Date data were read onto computer
% KINST - Generic name of recording instrument
% DATA1 - First data block
%
% If the SAC data file is for spectral or unevenly-spaced xy data,
% following fields may exist.
%
% DATA2 - Second data block
%
% Values of enumerated I-type header variables are converted from integers
% to corresponding alphanumeric names (all upper case).
% *************************************************************************
% This program was developed originally from the program readsac.m of the
% package MatSeis 1.6 by Sandia National Laboratories.
%
% Mark Harris, mharris@sandia.gov
% Copyright (c) 1996-2001 Sandia National Laboratories. All rights
% reserved.
% *************************************************************************
%
% Copyright, 19, The Board of Governors of the Los Alamos National
% Security, LLC. This software was produced under a U. S. Government
% contract (DE-AC52-06NA25396) by Los Alamos National Laboratory, which is
% operated by the Los Alamos National Security, LLC for the U. S.
% Department of Energy. The U. S. Government is licensed to use, reproduce,
% and distribute this software. Permission is granted to the public to copy
% and use this software without charge, provided that this Notice and any
% statement of authorship are reproduced on all copies. Neither the
% Government nor the LANS makes any warranty, express or implied, or
% assumes any liability or responsibility for the use of this software.
%
% Xiaoning Yang, xyang@lanl.gov 2002, 2008, 2011
%
% process input argument
if nargin < 1
filenames = dir;
filenames = filenames(~[filenames.isdir]);
filenames = {filenames.name};
else
% check input argument
if nargin ~= 1
error(' Wrong number of input arguments !!!')
end
if ~iscell(filenames) && (~ischar(filenames) || size(filenames, 1) ...
~= 1)
error('Input must be a string or a cell array of strings !!!')
elseif ischar(filenames)
filenames = cellstr(filenames);
end
% treat wildcard
nf = length(filenames);
filename_temp = cell(nf, 1);
for i = 1:nf
if ismember('*', filenames{i})
[pathstri, ~] = fileparts(filenames{i}); % separate path/name
filenamei = dir(deblank(filenames{i}));
if isempty(pathstri)
filename_temp(i) = {{filenamei.name}};
else % add path to filenames
filenamei_temp = char({filenamei.name});
pathstr = [pathstri, filesep];
pathstr = repmat(pathstr, size(filenamei_temp, 1), 1);
filenamei = [pathstr filenamei_temp];
filename_temp(i) = {cellstr(filenamei)};
end
else
filename_temp(i) = {filenames(i)};
end
end
filenames = [filename_temp{:}];
end
nfiles = length(filenames);
% initialize output structure
s = sacstruct(nfiles);
% used to flag successfully read SAC files
count = false(nfiles, 1);
% read all files
for f = 1:nfiles
% open SAC file
fid = fopen(filenames{f}, 'r');
if fid ~= -1
% read SAC file header
[A, count1] = fread(fid, [70 1], 'float32');
if count1 ~= 70, continue; end
[B, count2] = fread(fid, [40 1], 'int32');
if count2 ~= 40, continue; end
if ~ismember(B(7), 1:6) % non-native byte order
fclose(fid);
[~, ~, endian] = computer;
if strcmp(endian, 'B')
fid = fopen(filenames{f}, 'r', 'l');
else
fid = fopen(filenames{f}, 'r', 'b');
end
A = fread(fid, [70 1], 'float32');
B = fread(fid, [40 1], 'int32');
end
[C, count3] = fread(fid, [1 192], 'char');
if count3 ~= 192, continue; end
C = char(C);
% process valid SAC data file
if B(10) >= 1 && (B(16) == 1 || B(16) == 2 || B(16) == 3 || ...
B(16) == 4 || B(16) == 51) && (B(36) == 0 || B(36) == 1)
% set undefined values
A(A == -12345.0) = NaN;
B(B == -12345) = NaN;
C = cellstr(reshape(C, 8, 24)');
C(strncmp('-12345', C, 6)) = {' '};
% fill output structure
[~, name, ext] = fileparts(filenames{f});
s(f).FILENAME = [name, ext];
s(f).DELTA = A(1);
s(f).DEPMIN = A(2);
s(f).DEPMAX = A(3);
s(f).SCALE = A(4);
s(f).ODELTA = A(5);
s(f).B = A(6);
s(f).E = A(7);
s(f).O = A(8);
s(f).A = A(9);
s(f).INTERNAL1 = A(10);
s(f).T0 = A(11);
s(f).T1 = A(12);
s(f).T2 = A(13);
s(f).T3 = A(14);
s(f).T4 = A(15);
s(f).T5 = A(16);
s(f).T6 = A(17);
s(f).T7 = A(18);
s(f).T8 = A(19);
s(f).T9 = A(20);
s(f).F = A(21);
s(f).RESP0 = A(22);
s(f).RESP1 = A(23);
s(f).RESP2 = A(24);
s(f).RESP3 = A(25);
s(f).RESP4 = A(26);
s(f).RESP5 = A(27);
s(f).RESP6 = A(28);
s(f).RESP7 = A(29);
s(f).RESP8 = A(30);
s(f).RESP9 = A(31);
s(f).STLA = A(32);
s(f).STLO = A(33);
s(f).STEL = A(34);
s(f).STDP = A(35);
s(f).EVLA = A(36);
s(f).EVLO = A(37);
s(f).EVEL = A(38);
s(f).EVDP = A(39);
s(f).MAG = A(40);
s(f).USER0 = A(41);
s(f).USER1 = A(42);
s(f).USER2 = A(43);
s(f).USER3 = A(44);
s(f).USER4 = A(45);
s(f).USER5 = A(46);
s(f).USER6 = A(47);
s(f).USER7 = A(48);
s(f).USER8 = A(49);
s(f).USER9 = A(50);
s(f).DIST = A(51);
s(f).AZ = A(52);
s(f).BAZ = A(53);
s(f).GCARC = A(54);
s(f).INTERNAL2 = A(55);
s(f).INTERNAL3 = A(56);
s(f).DEPMEN = A(57);
s(f).CMPAZ = A(58);
s(f).CMPINC = A(59);
s(f).XMINIMUM = A(60);
s(f).XMAXIMUM = A(61);
s(f).YMINIMUM = A(62);
s(f).YMAXIMUM = A(63);
s(f).UNUSED1 = A(64);
s(f).UNUSED2 = A(65);
s(f).UNUSED3 = A(66);
s(f).UNUSED4 = A(67);
s(f).UNUSED5 = A(68);
s(f).UNUSED6 = A(69);
s(f).UNUSED7 = A(70);
s(f).NZYEAR = B(1);
s(f).NZJDAY = B(2);
s(f).NZHOUR = B(3);
s(f).NZMIN = B(4);
s(f).NZSEC = B(5);
s(f).NZMSEC = B(6);
s(f).NVHDR = B(7);
s(f).NORID = B(8);
s(f).NEVID = B(9);
s(f).NPTS = B(10);
s(f).INTERNAL4 = B(11);
s(f).NWFID = B(12);
s(f).NXSIZE = B(13);
s(f).NYSIZE = B(14);
s(f).UNUSED8 = B(15);
switch B(16)
case 1, filetype = 'ITIME';
case 2, filetype = 'IRLIM';
case 3, filetype = 'IAMPH';
case 4, filetype = 'IXY';
case 51, filetype = 'IXYZ';
end
s(f).IFTYPE = filetype;
switch B(17)
case 5, sigtype = 'IUNKN';
case 6, sigtype = 'IDISP';
case 7, sigtype = 'IVEL';
case 8, sigtype = 'IACC';
case 50, sigtype = 'IVOLTS';
otherwise, sigtype = '';
end
s(f).IDEP = sigtype;
switch B(18)
case 5, refequiv = 'IUNKN';
case 9, refequiv = 'IB';
case 10, refequiv = 'IDAY';
case 11, refequiv = 'IO';
case 12, refequiv = 'IA';
case 13, refequiv = 'IT0';
case 14, refequiv = 'IT1';
case 15, refequiv = 'IT2';
case 16, refequiv = 'IT3';
case 17, refequiv = 'IT4';
case 18, refequiv = 'IT5';
case 19, refequiv = 'IT6';
case 20, refequiv = 'IT7';
case 21, refequiv = 'IT8';
case 22, refequiv = 'IT9';
otherwise, refequiv = '';
end
s(f).IZTYPE = refequiv;
s(f).UNUSED9 = B(19);
s(f).IINST = B(20);
s(f).ISTREG = B(21);
s(f).IEVREG = B(22);
switch B(23)
case 5, evtype = 'IUNKN';
case 37, evtype = 'INUCL';
case 38, evtype = 'IPREN';
case 39, evtype = 'IPOSTN';
case 40, evtype = 'IQUAKE';
case 41, evtype = 'IPREQ';
case 42, evtype = 'IPOSTQ';
case 43, evtype = 'ICHEM';
case 44, evtype = 'IOTHER';
case 70, evtype = 'IQB';
case 71, evtype = 'IQB1';
case 72, evtype = 'IQB2';
case 73, evtype = 'IQBX';
case 74, evtype = 'IQMT';
case 75, evtype = 'IEQ';
case 76, evtype = 'IEQ1';
case 77, evtype = 'IEQ2';
case 78, evtype = 'IME';
case 79, evtype = 'IEX';
case 80, evtype = 'INU';
case 81, evtype = 'INC';
case 82, evtype = 'IO_';
case 83, evtype = 'IL';
case 84, evtype = 'IR';
case 85, evtype = 'IT';
case 86, evtype = 'IU';
otherwise, evtype = '';
end
s(f).IEVTYP = evtype;
switch B(24)
case 44, quality = 'IOTHER';
case 45, quality = 'IGOOD';
case 46, quality = 'IGLCH';
case 47, quality = 'IDROP';
case 48, quality = 'ILOWSN';
otherwise, quality = '';
end
s(f).IQUAL = quality;
switch B(25)
case 49, synth = 'IRLDTA';
otherwise, synth = '';
end
s(f).ISYNTH = synth;
switch B(26)
case 52, magtype = 'IMB';
case 53, magtype = 'IMS';
case 54, magtype = 'IML';
case 55, magtype = 'IMW';
case 56, magtype = 'IMD';
case 57, magtype = 'IMX';
otherwise, magtype = '';
end
s(f).IMAGTYP = magtype;
switch B(27)
case 58, magsrc = 'INEIC';
case 59, magsrc = 'IPDE';
case 60, magsrc = 'IISC';
case 61, magsrc = 'IREB';
case 62, magsrc = 'IUSGS';
case 63, magsrc = 'IBRK';
case 64, magsrc = 'ICALTECH';
case 65, magsrc = 'ILLNL';
case 66, magsrc = 'IEVLOC';
case 67, magsrc = 'IJSOP';
case 68, magsrc = 'IUSER';
case 69, magsrc = 'IUNKNOWN';
otherwise, magsrc = '';
end
s(f).IMAGSRC = magsrc;
s(f).UNUSED10 = B(28);
s(f).UNUSED11 = B(29);
s(f).UNUSED12 = B(30);
s(f).UNUSED13 = B(31);
s(f).UNUSED14 = B(32);
s(f).UNUSED15 = B(33);
s(f).UNUSED16 = B(34);
s(f).UNUSED17 = B(35);
s(f).LEVEN = logical(B(36));
if ~isnan(B(37))
s(f).LPSPOL = logical(B(37));
else
s(f).LPSPOL = B(37);
end
if ~isnan(B(38))
s(f).LOVROK = logical(B(38));
else
s(f).LOVROK = B(38);
end
if ~isnan(B(39))
s(f).LCALDA = logical(B(39));
else
s(f).LCALDA = B(39);
end
if ~isnan(B(40))
s(f).UNUSED18 = logical(B(40));
else
s(f).UNUSED18 = B(40);
end
s(f).KSTNM = C{1};
s(f).KEVNM = [C{2:3}];
s(f).KHOLE = C{4};
s(f).KO = C{5};
s(f).KA = C{6};
s(f).KT0 = C{7};
s(f).KT1 = C{8};
s(f).KT2 = C{9};
s(f).KT3 = C{10};
s(f).KT4 = C{11};
s(f).KT5 = C{12};
s(f).KT6 = C{13};
s(f).KT7 = C{14};
s(f).KT8 = C{15};
s(f).KT9 = C{16};
s(f).KF = C{17};
s(f).KUSER0 = C{18};
s(f).KUSER1 = C{19};
s(f).KUSER2 = C{20};
s(f).KCMPNM = C{21};
s(f).KNETWK = C{22};
s(f).KDATRD = C{23};
s(f).KINST = C{24};
% read data blocks
clear count2
[D, count1] = fread(fid, [s(f).NPTS, 1], 'float32');
s(f).DATA1 = D;
if ~s(f).LEVEN || strcmp(s(f).IFTYPE, 'IAMPH') || ...
strcmp(s(f).IFTYPE, 'IRLIM')
[D, count2] = fread(fid, [s(f).NPTS, 1], 'float32');
s(f).DATA2 = D;
end
% flag successfully read SAC file
if count1 == s(f).NPTS
if exist('count2','var')
if count2 == s(f).NPTS
count(f) = true;
end
else
count(f) = true;
end
end
end
% close SAC file.
fclose(fid);
end
end
s = s(count);
% assign output
if nargout == 1
t1 = s;
elseif nargout == 2
[t1, t2] = getsacdata(s);
else
[t1, t2, d] = getsacdata(s);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function s = sacstruct(n)
% S = SACSTRUCT(N); returns an Nx1 SAC structure with all fields
% initiated to their undefined (default) values. N defaults to 1.
%
% Xiaoning Yang 2008 (modified from subfunction init_sac of readsac.m
% in the MATSEIS package)
% check arguments.
if (nargin < 1)
n = 1;
end
% initialize output structure.
sacfields = {'FILENAME'; 'DELTA'; 'DEPMIN'; 'DEPMAX'; 'SCALE'; ...
'ODELTA'; 'B'; 'E'; 'O'; 'A'; 'INTERNAL1'; 'T0'; 'T1'; 'T2'; 'T3'; ...
'T4'; 'T5'; 'T6'; 'T7'; 'T8'; 'T9'; 'F'; 'RESP0'; 'RESP1'; 'RESP2'; ...
'RESP3'; 'RESP4'; 'RESP5'; 'RESP6'; 'RESP7'; 'RESP8'; 'RESP9'; ...
'STLA'; 'STLO'; 'STEL'; 'STDP'; 'EVLA'; 'EVLO'; 'EVEL'; 'EVDP'; ...
'MAG'; 'USER0'; 'USER1'; 'USER2'; 'USER3'; 'USER4'; 'USER5'; ...
'USER6'; 'USER7'; 'USER8'; 'USER9'; 'DIST'; 'AZ'; 'BAZ'; 'GCARC'; ...
'INTERNAL2'; 'INTERNAL3'; 'DEPMEN'; 'CMPAZ'; 'CMPINC'; 'XMINIMUM'; ...
'XMAXIMUM'; 'YMINIMUM'; 'YMAXIMUM'; 'UNUSED1'; 'UNUSED2'; ...
'UNUSED3'; 'UNUSED4'; 'UNUSED5'; 'UNUSED6'; 'UNUSED7'; 'NZYEAR'; ...
'NZJDAY'; 'NZHOUR'; 'NZMIN'; 'NZSEC'; 'NZMSEC'; 'NVHDR'; 'NORID'; ...
'NEVID'; 'NPTS'; 'INTERNAL4'; 'NWFID'; 'NXSIZE'; 'NYSIZE'; ...
'UNUSED8'; 'IFTYPE'; 'IDEP'; 'IZTYPE'; 'UNUSED9'; 'IINST'; ...
'ISTREG'; 'IEVREG'; 'IEVTYP'; 'IQUAL'; 'ISYNTH'; 'IMAGTYP'; ...
'IMAGSRC'; 'UNUSED10'; 'UNUSED11'; 'UNUSED12'; 'UNUSED13'; ...
'UNUSED14'; 'UNUSED15'; 'UNUSED16'; 'UNUSED17'; 'LEVEN'; 'LPSPOL'; ...
'LOVROK'; 'LCALDA'; 'UNUSED18'; 'KSTNM'; 'KEVNM'; 'KHOLE'; 'KO'; ...
'KA'; 'KT0'; 'KT1'; 'KT2'; 'KT3'; 'KT4'; 'KT5'; 'KT6'; 'KT7'; ...
'KT8'; 'KT9'; 'KF'; 'KUSER0'; 'KUSER1'; 'KUSER2'; 'KCMPNM'; ...
'KNETWK'; 'KDATRD'; 'KINST'; 'DATA1';};
cl = cell(size(sacfields,1),n);
cl(2:111, :) = {nan};
cl(112:end-1, :) = {' '};
s = cell2struct(cl, sacfields, 1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [out1, out2, out3] = getsacdata(s)
% [INDEP, DEP] = GETSACDATA(S); extracts independent and dependent
% variables from SAC structure S and puts them in INDEP and DEP. INDEP and
% DEP can either be time and data or x and y. They are cell arrays if
% length(S) > 1 and the lengths of the variables for different S elements
% are different, or vectors (matrices) if either length(S) == 1 or the
% lengths of the variables for different S elements are the same. If S
% contains time series, the independent variable (time) is absolute time
% for each series if there is no origin time in the header, or is relative
% to the origin time if it exists.
%
% [OUT1, OUT2, OUT3] = GETSACDATA(S); extracts either spectral data from
% spectral-type structures or xyz data from xyz-type (spectrogram)
% structures. In case of spectral structures, OUT1 is frequency vector,
% OUT2 is either real part or amplitude, and OUT3 is either imaginary part
% or phase. It is assumed, as the SAC default, that the complete complex
% spectrum of a signal, which spans from zero to (NPTS-1)*df where df is
% frequence sampling rate, are present. OUT1 only contains frequency from
% zero to Fn, where Fn is the Nyquist frequency (usually NPTS/2*df.) For
% xyz data, OUT1 is x (time), OUT2 is y (frequency) and OUT3 is z
% (spectrogram).
%
% *** As of this version, SAC does not define general xyz-type files. ***
%
% S is defined in m-file readsac.m and is usually the output from
% readsac.m. S of dimension larger than one must contain same type of data
% (time series, spectra, xy or xyz).
% check output arguments
if nargout < 2
error(' Number of output arguments must be larger than one !!!')
end
% allocate output arguments
l = length(s);
if l == 0
out1 = [];
out2 = [];
if nargout == 3
out3 = [];
end
return
end
out1 = cell(l,1);
out2 = cell(l,1);
if nargout == 3
out3 = cell(l,1);
end
% loop over s
ll = zeros(l, 1); % lengths of time series
for i = 1:l
ll(i) = s(i).NPTS;
if i == 1
file_type = s(i).IFTYPE;
% reference time for all traces
if strcmp(file_type, 'ITIME')
year0 = s(i).NZYEAR;
days0 = s(i).NZJDAY;
ref0 = days0*86400+s(i).NZHOUR*3600+s(i).NZMIN*60+...
s(i).NZSEC+s(i).NZMSEC/1000;
if isnan(ref0)
ref0 = 0;
end
end
end
% check file type
if ~strcmp(s(i).IFTYPE, file_type)
error(' File types in input structure must be same !!!')
end
if strcmp(file_type, 'IXYZ')
if nargout ~= 3
error(' Number of output arguments must be three !!!')
end
out1(i) = {linspace(s(i).XMINIMUM, s(i).XMAXIMUM, s(i).NXSIZE)};
out2(i) = {linspace(s(i).YMINIMUM, s(i).YMAXIMUM, s(i).NYSIZE)'};
out3(i) = {reshape(s(i).DATA1, s(i).NXSIZE, s(i).NYSIZE)'};
elseif strcmp(file_type, 'IXY') && ~s(i).LEVEN
if nargout ~= 2
error(' Number of output arguments must be two !!!')
end
out1(i) = {s(i).DATA2}; % see SAC Manual
out2(i) = {s(i).DATA1};
else % spectrum and evenly-spaced time series
if isnan(s(i).B)
B = 0;
else
B = s(i).B;
end
if strcmp(file_type, 'ITIME')
if isnan(s(i).O)
% reference time of this trace
year = s(i).NZYEAR;
year_diff = year-year0;
add_sec = 0;
if year_diff ~= 0
if year_diff > 0
ny = linspace(year0, year-1, year_diff);
for j = 1:length(ny)
if isleap(ny(j))
add_sec = add_sec+86400*366;
else
add_sec = add_sec+86400*365;
end
end
else
ny = linspace(year, year0-1, abs(year_diff));
for j = 1:length(ny)
if isleap(ny(j))
add_sec = add_sec-86400*366;
else
add_sec = add_sec-86400*365;
end
end
end
end
days = s(i).NZJDAY;
ref = days*86400+s(i).NZHOUR*3600+s(i).NZMIN*60+...
s(i).NZSEC+s(i).NZMSEC/1000+add_sec;
if isnan(ref)
ref = 0;
end
if isnan(B)
B = 0;
else
B = B+ref-ref0;
end
O = 0;
else
O = s(i).O;
end
out1(i) = {(0:s(i).NPTS-1)'*s(i).DELTA+B-O};
elseif strcmp(file_type, 'IXY')
out1(i) = {(0:s(i).NPTS-1)'*s(i).DELTA+B};
else % frequency vector for positive-frequency part of the spectrum
if B ~= 0
warning('MATLAB:getsacdata:FirstFPoint', ['First ', ...
'frequency point is not zero Hz !!!'])
end
npts = round(s(i).NPTS/2);
if s(i).NPTS/2 ~= npts
warning('MATLAB:getsacdata:NumberOfData', [' Spectrum', ...
' has odd number of data points !!!'])
end
out1(i) = {(0:npts)'*s(i).DELTA+B};
end
if (strcmp(file_type, 'ITIME') || strcmp(file_type, 'IXY')) && ...
nargout ~= 2
error(' Number of output arguments must be two !!!')
elseif (strcmp(file_type, 'IAMPH') || ...
strcmp(file_type, 'IRLIM')) && nargout ~= 3
error(' Number of output arguments must be three !!!')
else
out2(i) = {s(i).DATA1};
if strcmp(file_type, 'IAMPH') || strcmp(file_type, 'IRLIM')
out3(i) = {s(i).DATA2};
end
end
end
end
if l == 1
out1 = out1{:};
out2 = out2{:};
if nargout == 3
out3 = out3{:};
end
elseif ~any(diff(ll))
temp1 = zeros(ll(1), l);
temp2 = temp1;
if nargout == 3
temp3 = temp1;
end
if strcmp(file_type, 'IRLIM') || strcmp(file_type, 'IAMPH')
temp1 = zeros(round(ll(1)/2)+1, 1);
end
for i = 1:l
temp1(:, i) = out1{i};
temp2(:, i) = out2{i};
if nargout == 3
temp3(:, i) = out3{i};
end
end
out1 = temp1;
out2 = temp2;
if nargout == 3
out3 = temp3;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function ilp = isleap(year)
% ILP = ISLEAP(YEAR); tests if YEAR is leap year(s). YEAR can
% be a scalar, a vector or a cell array.
if iscell(year), year = [year{:}]; end
l = length(year);
ilp = true(l, 1);
for i = 1:l
if rem(year(i), 4) ~= 0 || (rem(year(i), 100) == 0 && ...
rem(year(i), 400) ~= 0)
ilp(i) = false;
end
end