forked from sgiavasis/CPAC_regtest_pack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
corr_csv.py
executable file
·87 lines (60 loc) · 2.07 KB
/
corr_csv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#!/usr/bin/python
import numpy as np
import scipy
from scipy import stats
import pandas as pd
def read_txt_file(txt_file):
with open(txt_file,"r") as f:
strings = f.read().splitlines()
return strings
def read_csv_into_df(csv_file, header_row=None):
if header_row:
csvdf = pd.read_csv(csv_file, header=header_row, delimiter="\t", comment="#")
else:
csvdf = pd.read_csv(csv_file, delimiter="\t", comment="#")
return csvdf
def concordance(x, y, rho):
"""
Calculates Lin's concordance correlation coefficient.
Usage: concordence(x, y) where x, y are equal-length arrays
Returns: concordance correlation coefficient
Note: strict than pearson
"""
import math
import numpy as np
map(float, x)
map(float, y)
xvar = np.var(x)
yvar = np.var(y)
#rho = scipy.stats.pearsonr(x, y)[0]
#p = np.corrcoef(x,y) # numpy version of pearson correlation coefficient
ccc = 2. * rho * math.sqrt(xvar) * math.sqrt(yvar) / (xvar + yvar + (np.mean(x) - np.mean(y))**2)
return ccc
def correlate(data_1, data_2):
pearson = scipy.stats.pearsonr(data_1, data_2)[0]
concor = concordance(data_1, data_2, pearson)
return concor
def quick_corr_csv(csv_1, csv_2):
csv_1_data = read_csv_into_df(csv_1)
csv_2_data = read_csv_into_df(csv_2)
concors = []
for col, col2 in zip(csv_1_data, csv_2_data):
try:
concor = correlate(csv_1_data[col], csv_2_data[col2])
concors.append(concor)
print("{0}: {1}".format(col2, concor))
except KeyError:
print("different name now - {0}".format(col))
else:
print("Data not same shape")
print("\nAverage concordance correlation of all columns:")
print(np.asarray(concors).mean())
def main():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("csv1", type=str)
parser.add_argument("csv2", type=str)
args = parser.parse_args()
quick_corr_csv(args.csv1, args.csv2)
if __name__ == "__main__":
main()